Metamath Proof Explorer


Theorem circlemethhgt

Description: The circle method, where the Vinogradov sums are weighted using the Von Mangoldt function and smoothed using functions H and K . Statement 7.49 of Helfgott p. 69. At this point there is no further constraint on the smoothing functions. (Contributed by Thierry Arnoux, 22-Dec-2021)

Ref Expression
Hypotheses circlemethhgt.h φH:
circlemethhgt.k φK:
circlemethhgt.n φN0
Assertion circlemethhgt φnrepr3NΛn0Hn0Λn1Kn1Λn2Kn2=01Λ×fHvtsNxΛ×fKvtsNx2ei2π- Nxdx

Proof

Step Hyp Ref Expression
1 circlemethhgt.h φH:
2 circlemethhgt.k φK:
3 circlemethhgt.n φN0
4 3nn 3
5 4 a1i φ3
6 s3len ⟨“Λ×fHΛ×fKΛ×fK”⟩=3
7 6 eqcomi 3=⟨“Λ×fHΛ×fKΛ×fK”⟩
8 7 a1i φ3=⟨“Λ×fHΛ×fKΛ×fK”⟩
9 simprl φxyx
10 simprr φxyy
11 9 10 remulcld φxyxy
12 11 recnd φxyxy
13 vmaf Λ:
14 13 a1i φΛ:
15 nnex V
16 15 a1i φV
17 inidm =
18 12 14 1 16 16 17 off φΛ×fH:
19 cnex V
20 19 15 elmap Λ×fHΛ×fH:
21 18 20 sylibr φΛ×fH
22 12 14 2 16 16 17 off φΛ×fK:
23 19 15 elmap Λ×fKΛ×fK:
24 22 23 sylibr φΛ×fK
25 21 24 24 s3cld φ⟨“Λ×fHΛ×fKΛ×fK”⟩Word
26 8 25 wrdfd φ⟨“Λ×fHΛ×fKΛ×fK”⟩:0..^3
27 3 5 26 circlemeth φnrepr3Na0..^3⟨“Λ×fHΛ×fKΛ×fK”⟩ana=01a0..^3⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNxei2π- Nxdx
28 fveq2 a=0⟨“Λ×fHΛ×fKΛ×fK”⟩a=⟨“Λ×fHΛ×fKΛ×fK”⟩0
29 fveq2 a=0na=n0
30 28 29 fveq12d a=0⟨“Λ×fHΛ×fKΛ×fK”⟩ana=⟨“Λ×fHΛ×fKΛ×fK”⟩0n0
31 fveq2 a=1⟨“Λ×fHΛ×fKΛ×fK”⟩a=⟨“Λ×fHΛ×fKΛ×fK”⟩1
32 fveq2 a=1na=n1
33 31 32 fveq12d a=1⟨“Λ×fHΛ×fKΛ×fK”⟩ana=⟨“Λ×fHΛ×fKΛ×fK”⟩1n1
34 fveq2 a=2⟨“Λ×fHΛ×fKΛ×fK”⟩a=⟨“Λ×fHΛ×fKΛ×fK”⟩2
35 fveq2 a=2na=n2
36 34 35 fveq12d a=2⟨“Λ×fHΛ×fKΛ×fK”⟩ana=⟨“Λ×fHΛ×fKΛ×fK”⟩2n2
37 26 adantr φnrepr3N⟨“Λ×fHΛ×fKΛ×fK”⟩:0..^3
38 37 ffvelcdmda φnrepr3Na0..^3⟨“Λ×fHΛ×fKΛ×fK”⟩a
39 elmapi ⟨“Λ×fHΛ×fKΛ×fK”⟩a⟨“Λ×fHΛ×fKΛ×fK”⟩a:
40 38 39 syl φnrepr3Na0..^3⟨“Λ×fHΛ×fKΛ×fK”⟩a:
41 ssidd φnrepr3N
42 3 nn0zd φN
43 42 adantr φnrepr3NN
44 3nn0 30
45 44 a1i φnrepr3N30
46 simpr φnrepr3Nnrepr3N
47 41 43 45 46 reprf φnrepr3Nn:0..^3
48 47 ffvelcdmda φnrepr3Na0..^3na
49 40 48 ffvelcdmd φnrepr3Na0..^3⟨“Λ×fHΛ×fKΛ×fK”⟩ana
50 30 33 36 49 prodfzo03 φnrepr3Na0..^3⟨“Λ×fHΛ×fKΛ×fK”⟩ana=⟨“Λ×fHΛ×fKΛ×fK”⟩0n0⟨“Λ×fHΛ×fKΛ×fK”⟩1n1⟨“Λ×fHΛ×fKΛ×fK”⟩2n2
51 ovex Λ×fHV
52 s3fv0 Λ×fHV⟨“Λ×fHΛ×fKΛ×fK”⟩0=Λ×fH
53 51 52 mp1i φnrepr3N⟨“Λ×fHΛ×fKΛ×fK”⟩0=Λ×fH
54 53 fveq1d φnrepr3N⟨“Λ×fHΛ×fKΛ×fK”⟩0n0=Λ×fHn0
55 simpl φnrepr3Nφ
56 c0ex 0V
57 56 tpid1 0012
58 fzo0to3tp 0..^3=012
59 57 58 eleqtrri 00..^3
60 59 a1i φnrepr3N00..^3
61 47 60 ffvelcdmd φnrepr3Nn0
62 ffn Λ:ΛFn
63 13 62 ax-mp ΛFn
64 63 a1i φΛFn
65 1 ffnd φHFn
66 eqidd φn0Λn0=Λn0
67 eqidd φn0Hn0=Hn0
68 64 65 16 16 17 66 67 ofval φn0Λ×fHn0=Λn0Hn0
69 55 61 68 syl2anc φnrepr3NΛ×fHn0=Λn0Hn0
70 54 69 eqtrd φnrepr3N⟨“Λ×fHΛ×fKΛ×fK”⟩0n0=Λn0Hn0
71 ovex Λ×fKV
72 s3fv1 Λ×fKV⟨“Λ×fHΛ×fKΛ×fK”⟩1=Λ×fK
73 71 72 mp1i φnrepr3N⟨“Λ×fHΛ×fKΛ×fK”⟩1=Λ×fK
74 73 fveq1d φnrepr3N⟨“Λ×fHΛ×fKΛ×fK”⟩1n1=Λ×fKn1
75 1ex 1V
76 75 tpid2 1012
77 76 58 eleqtrri 10..^3
78 77 a1i φnrepr3N10..^3
79 47 78 ffvelcdmd φnrepr3Nn1
80 2 ffnd φKFn
81 eqidd φn1Λn1=Λn1
82 eqidd φn1Kn1=Kn1
83 64 80 16 16 17 81 82 ofval φn1Λ×fKn1=Λn1Kn1
84 55 79 83 syl2anc φnrepr3NΛ×fKn1=Λn1Kn1
85 74 84 eqtrd φnrepr3N⟨“Λ×fHΛ×fKΛ×fK”⟩1n1=Λn1Kn1
86 s3fv2 Λ×fKV⟨“Λ×fHΛ×fKΛ×fK”⟩2=Λ×fK
87 71 86 mp1i φnrepr3N⟨“Λ×fHΛ×fKΛ×fK”⟩2=Λ×fK
88 87 fveq1d φnrepr3N⟨“Λ×fHΛ×fKΛ×fK”⟩2n2=Λ×fKn2
89 2ex 2V
90 89 tpid3 2012
91 90 58 eleqtrri 20..^3
92 91 a1i φnrepr3N20..^3
93 47 92 ffvelcdmd φnrepr3Nn2
94 eqidd φn2Λn2=Λn2
95 eqidd φn2Kn2=Kn2
96 64 80 16 16 17 94 95 ofval φn2Λ×fKn2=Λn2Kn2
97 55 93 96 syl2anc φnrepr3NΛ×fKn2=Λn2Kn2
98 88 97 eqtrd φnrepr3N⟨“Λ×fHΛ×fKΛ×fK”⟩2n2=Λn2Kn2
99 85 98 oveq12d φnrepr3N⟨“Λ×fHΛ×fKΛ×fK”⟩1n1⟨“Λ×fHΛ×fKΛ×fK”⟩2n2=Λn1Kn1Λn2Kn2
100 70 99 oveq12d φnrepr3N⟨“Λ×fHΛ×fKΛ×fK”⟩0n0⟨“Λ×fHΛ×fKΛ×fK”⟩1n1⟨“Λ×fHΛ×fKΛ×fK”⟩2n2=Λn0Hn0Λn1Kn1Λn2Kn2
101 50 100 eqtrd φnrepr3Na0..^3⟨“Λ×fHΛ×fKΛ×fK”⟩ana=Λn0Hn0Λn1Kn1Λn2Kn2
102 101 sumeq2dv φnrepr3Na0..^3⟨“Λ×fHΛ×fKΛ×fK”⟩ana=nrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
103 nfv aφx01
104 nfcv _aΛ×fHvtsNx
105 fzofi 1..^3Fin
106 105 a1i φx011..^3Fin
107 56 a1i φx010V
108 eqid 0=0
109 108 orci 0=00=3
110 0elfz 30003
111 elfznelfzob 003¬01..^30=00=3
112 44 110 111 mp2b ¬01..^30=00=3
113 109 112 mpbir ¬01..^3
114 113 a1i φx01¬01..^3
115 3 ad2antrr φx01a1..^3N0
116 ioossre 01
117 ax-resscn
118 116 117 sstri 01
119 118 a1i φ01
120 119 sselda φx01x
121 120 adantr φx01a1..^3x
122 26 ad2antrr φx01a1..^3⟨“Λ×fHΛ×fKΛ×fK”⟩:0..^3
123 fzo0ss1 1..^30..^3
124 123 a1i φx011..^30..^3
125 124 sselda φx01a1..^3a0..^3
126 122 125 ffvelcdmd φx01a1..^3⟨“Λ×fHΛ×fKΛ×fK”⟩a
127 126 39 syl φx01a1..^3⟨“Λ×fHΛ×fKΛ×fK”⟩a:
128 115 121 127 vtscl φx01a1..^3⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNx
129 51 52 ax-mp ⟨“Λ×fHΛ×fKΛ×fK”⟩0=Λ×fH
130 28 129 eqtrdi a=0⟨“Λ×fHΛ×fKΛ×fK”⟩a=Λ×fH
131 130 oveq1d a=0⟨“Λ×fHΛ×fKΛ×fK”⟩avtsN=Λ×fHvtsN
132 131 fveq1d a=0⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNx=Λ×fHvtsNx
133 3 adantr φx01N0
134 18 adantr φx01Λ×fH:
135 133 120 134 vtscl φx01Λ×fHvtsNx
136 103 104 106 107 114 128 132 135 fprodsplitsn φx01a1..^30⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNx=a1..^3⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNxΛ×fHvtsNx
137 uncom 1..^30=01..^3
138 fzo0sn0fzo1 30..^3=01..^3
139 4 138 ax-mp 0..^3=01..^3
140 137 139 eqtr4i 1..^30=0..^3
141 140 a1i φx011..^30=0..^3
142 141 prodeq1d φx01a1..^30⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNx=a0..^3⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNx
143 fzo13pr 1..^3=12
144 143 eleq2i a1..^3a12
145 vex aV
146 145 elpr a12a=1a=2
147 144 146 bitri a1..^3a=1a=2
148 31 adantl φa=1⟨“Λ×fHΛ×fKΛ×fK”⟩a=⟨“Λ×fHΛ×fKΛ×fK”⟩1
149 71 72 mp1i φa=1⟨“Λ×fHΛ×fKΛ×fK”⟩1=Λ×fK
150 148 149 eqtrd φa=1⟨“Λ×fHΛ×fKΛ×fK”⟩a=Λ×fK
151 34 adantl φa=2⟨“Λ×fHΛ×fKΛ×fK”⟩a=⟨“Λ×fHΛ×fKΛ×fK”⟩2
152 71 86 mp1i φa=2⟨“Λ×fHΛ×fKΛ×fK”⟩2=Λ×fK
153 151 152 eqtrd φa=2⟨“Λ×fHΛ×fKΛ×fK”⟩a=Λ×fK
154 150 153 jaodan φa=1a=2⟨“Λ×fHΛ×fKΛ×fK”⟩a=Λ×fK
155 147 154 sylan2b φa1..^3⟨“Λ×fHΛ×fKΛ×fK”⟩a=Λ×fK
156 155 adantlr φx01a1..^3⟨“Λ×fHΛ×fKΛ×fK”⟩a=Λ×fK
157 156 oveq1d φx01a1..^3⟨“Λ×fHΛ×fKΛ×fK”⟩avtsN=Λ×fKvtsN
158 157 fveq1d φx01a1..^3⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNx=Λ×fKvtsNx
159 158 prodeq2dv φx01a1..^3⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNx=a1..^3Λ×fKvtsNx
160 22 adantr φx01Λ×fK:
161 133 120 160 vtscl φx01Λ×fKvtsNx
162 fprodconst 1..^3FinΛ×fKvtsNxa1..^3Λ×fKvtsNx=Λ×fKvtsNx1..^3
163 106 161 162 syl2anc φx01a1..^3Λ×fKvtsNx=Λ×fKvtsNx1..^3
164 nnuz =1
165 4 164 eleqtri 31
166 hashfzo 311..^3=31
167 165 166 ax-mp 1..^3=31
168 3m1e2 31=2
169 167 168 eqtri 1..^3=2
170 169 a1i φx011..^3=2
171 170 oveq2d φx01Λ×fKvtsNx1..^3=Λ×fKvtsNx2
172 159 163 171 3eqtrd φx01a1..^3⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNx=Λ×fKvtsNx2
173 172 oveq1d φx01a1..^3⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNxΛ×fHvtsNx=Λ×fKvtsNx2Λ×fHvtsNx
174 161 sqcld φx01Λ×fKvtsNx2
175 135 174 mulcomd φx01Λ×fHvtsNxΛ×fKvtsNx2=Λ×fKvtsNx2Λ×fHvtsNx
176 173 175 eqtr4d φx01a1..^3⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNxΛ×fHvtsNx=Λ×fHvtsNxΛ×fKvtsNx2
177 136 142 176 3eqtr3d φx01a0..^3⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNx=Λ×fHvtsNxΛ×fKvtsNx2
178 177 oveq1d φx01a0..^3⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNxei2π- Nx=Λ×fHvtsNxΛ×fKvtsNx2ei2π- Nx
179 178 itgeq2dv φ01a0..^3⟨“Λ×fHΛ×fKΛ×fK”⟩avtsNxei2π- Nxdx=01Λ×fHvtsNxΛ×fKvtsNx2ei2π- Nxdx
180 27 102 179 3eqtr3d φnrepr3NΛn0Hn0Λn1Kn1Λn2Kn2=01Λ×fHvtsNxΛ×fKvtsNx2ei2π- Nxdx