Metamath Proof Explorer


Theorem clwlkclwwlklem2a

Description: Lemma for clwlkclwwlklem2 . (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 11-Apr-2021)

Ref Expression
Hypothesis clwlkclwwlklem2.f F=x0..^P1ifx<P2E-1PxPx+1E-1PxP0
Assertion clwlkclwwlklem2a E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEFWorddomEP:0FVi0..^FEFi=PiPi+1P0=PF

Proof

Step Hyp Ref Expression
1 clwlkclwwlklem2.f F=x0..^P1ifx<P2E-1PxPx+1E-1PxP0
2 simpl x<P2E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1x<P2
3 f1f1orn E:domE1-1RE:domE1-1 ontoranE
4 3 3ad2ant1 E:domE1-1RPWordV2PE:domE1-1 ontoranE
5 4 adantr E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEE:domE1-1 ontoranE
6 5 ad2antrl x<P2E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1E:domE1-1 ontoranE
7 elfzo0 x0..^P1x0P1x<P1
8 lencl PWordVP0
9 simpl x0P0x0
10 9 adantr x0P0x<P22Px0
11 elnn0z x0x0x
12 0red xP00
13 zre xx
14 13 adantr xP0x
15 nn0re P0P
16 2re 2
17 16 a1i P02
18 15 17 resubcld P0P2
19 18 adantl xP0P2
20 lelttr 0xP20xx<P20<P2
21 12 14 19 20 syl3anc xP00xx<P20<P2
22 nn0z P0P
23 2z 2
24 23 a1i P02
25 22 24 zsubcld P0P2
26 25 anim1i P00<P2P20<P2
27 elnnz P2P20<P2
28 26 27 sylibr P00<P2P2
29 nn0cn P0P
30 peano2cnm PP1
31 29 30 syl P0P1
32 31 subid1d P0P-1-0=P1
33 32 oveq1d P0P1-0-1=P-1-1
34 1cnd P01
35 29 34 34 subsub4d P0P-1-1=P1+1
36 1p1e2 1+1=2
37 36 a1i P01+1=2
38 37 oveq2d P0P1+1=P2
39 35 38 eqtrd P0P-1-1=P2
40 33 39 eqtrd P0P1-0-1=P2
41 40 eleq1d P0P1-0-1P2
42 41 adantr P00<P2P1-0-1P2
43 28 42 mpbird P00<P2P1-0-1
44 43 ex P00<P2P1-0-1
45 44 adantl xP00<P2P1-0-1
46 21 45 syld xP00xx<P2P1-0-1
47 46 exp4b xP00xx<P2P1-0-1
48 47 com23 x0xP0x<P2P1-0-1
49 48 imp x0xP0x<P2P1-0-1
50 11 49 sylbi x0P0x<P2P1-0-1
51 50 imp x0P0x<P2P1-0-1
52 51 com12 x<P2x0P0P1-0-1
53 52 adantr x<P22Px0P0P1-0-1
54 53 impcom x0P0x<P22PP1-0-1
55 df-2 2=1+1
56 55 a1i P02=1+1
57 56 oveq2d P0P2=P1+1
58 32 eqcomd P0P1=P-1-0
59 58 oveq1d P0P-1-1=P1-0-1
60 57 35 59 3eqtr2d P0P2=P1-0-1
61 60 adantl x0P0P2=P1-0-1
62 61 breq2d x0P0x<P2x<P1-0-1
63 62 biimpcd x<P2x0P0x<P1-0-1
64 63 adantr x<P22Px0P0x<P1-0-1
65 64 impcom x0P0x<P22Px<P1-0-1
66 elfzo0 x0..^P1-0-1x0P1-0-1x<P1-0-1
67 10 54 65 66 syl3anbrc x0P0x<P22Px0..^P1-0-1
68 67 exp32 x0P0x<P22Px0..^P1-0-1
69 68 a1d x0P0x<P1x<P22Px0..^P1-0-1
70 69 com24 x0P02Px<P2x<P1x0..^P1-0-1
71 70 ex x0P02Px<P2x<P1x0..^P1-0-1
72 71 com25 x0x<P12Px<P2P0x0..^P1-0-1
73 72 imp x0x<P12Px<P2P0x0..^P1-0-1
74 73 3adant2 x0P1x<P12Px<P2P0x0..^P1-0-1
75 74 com14 P02Px<P2x0P1x<P1x0..^P1-0-1
76 8 75 syl PWordV2Px<P2x0P1x<P1x0..^P1-0-1
77 76 imp PWordV2Px<P2x0P1x<P1x0..^P1-0-1
78 77 3adant1 E:domE1-1RPWordV2Px<P2x0P1x<P1x0..^P1-0-1
79 7 78 syl7bi E:domE1-1RPWordV2Px<P2x0..^P1x0..^P1-0-1
80 79 com13 x0..^P1x<P2E:domE1-1RPWordV2Px0..^P1-0-1
81 80 imp31 x0..^P1x<P2E:domE1-1RPWordV2Px0..^P1-0-1
82 fveq2 i=xPi=Px
83 fvoveq1 i=xPi+1=Px+1
84 82 83 preq12d i=xPiPi+1=PxPx+1
85 84 eleq1d i=xPiPi+1ranEPxPx+1ranE
86 85 adantl x0..^P1x<P2E:domE1-1RPWordV2Pi=xPiPi+1ranEPxPx+1ranE
87 81 86 rspcdv x0..^P1x<P2E:domE1-1RPWordV2Pi0..^P1-0-1PiPi+1ranEPxPx+1ranE
88 87 ex x0..^P1x<P2E:domE1-1RPWordV2Pi0..^P1-0-1PiPi+1ranEPxPx+1ranE
89 88 com13 i0..^P1-0-1PiPi+1ranEE:domE1-1RPWordV2Px0..^P1x<P2PxPx+1ranE
90 89 ad2antrl lastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEE:domE1-1RPWordV2Px0..^P1x<P2PxPx+1ranE
91 90 impcom E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1x<P2PxPx+1ranE
92 91 expdimp E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1x<P2PxPx+1ranE
93 92 impcom x<P2E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1PxPx+1ranE
94 f1ocnvdm E:domE1-1 ontoranEPxPx+1ranEE-1PxPx+1domE
95 6 93 94 syl2anc x<P2E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1E-1PxPx+1domE
96 2 95 jca x<P2E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1x<P2E-1PxPx+1domE
97 96 orcd x<P2E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1x<P2E-1PxPx+1domE¬x<P2E-1PxP0domE
98 simpl ¬x<P2E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1¬x<P2
99 5 ad2antrl ¬x<P2E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1E:domE1-1 ontoranE
100 nn0z x0x
101 peano2zm PP1
102 22 101 syl P0P1
103 100 102 anim12i x0P0xP1
104 zltlem1 xP1x<P1xP-1-1
105 103 104 syl x0P0x<P1xP-1-1
106 39 adantl x0P0P-1-1=P2
107 106 breq2d x0P0xP-1-1xP2
108 107 biimpd x0P0xP-1-1xP2
109 105 108 sylbid x0P0x<P1xP2
110 109 impancom x0x<P1P0xP2
111 110 imp x0x<P1P0xP2
112 nn0re x0x
113 112 adantr x0x<P1x
114 113 18 anim12i x0x<P1P0xP2
115 lenlt xP2xP2¬P2<x
116 114 115 syl x0x<P1P0xP2¬P2<x
117 111 116 mpbid x0x<P1P0¬P2<x
118 117 anim1i x0x<P1P0¬x<P2¬P2<x¬x<P2
119 114 ancomd x0x<P1P0P2x
120 119 adantr x0x<P1P0¬x<P2P2x
121 lttri3 P2xP2=x¬P2<x¬x<P2
122 120 121 syl x0x<P1P0¬x<P2P2=x¬P2<x¬x<P2
123 118 122 mpbird x0x<P1P0¬x<P2P2=x
124 123 exp31 x0x<P1P0¬x<P2P2=x
125 124 com23 x0x<P1¬x<P2P0P2=x
126 125 3adant2 x0P1x<P1¬x<P2P0P2=x
127 7 126 sylbi x0..^P1¬x<P2P0P2=x
128 127 impcom ¬x<P2x0..^P1P0P2=x
129 8 128 syl5com PWordV¬x<P2x0..^P1P2=x
130 129 3ad2ant2 E:domE1-1RPWordV2P¬x<P2x0..^P1P2=x
131 130 imp E:domE1-1RPWordV2P¬x<P2x0..^P1P2=x
132 131 fveq2d E:domE1-1RPWordV2P¬x<P2x0..^P1PP2=Px
133 132 preq1d E:domE1-1RPWordV2P¬x<P2x0..^P1PP2P0=PxP0
134 133 eleq1d E:domE1-1RPWordV2P¬x<P2x0..^P1PP2P0ranEPxP0ranE
135 134 biimpd E:domE1-1RPWordV2P¬x<P2x0..^P1PP2P0ranEPxP0ranE
136 135 exp32 E:domE1-1RPWordV2P¬x<P2x0..^P1PP2P0ranEPxP0ranE
137 136 com12 ¬x<P2E:domE1-1RPWordV2Px0..^P1PP2P0ranEPxP0ranE
138 137 com14 PP2P0ranEE:domE1-1RPWordV2Px0..^P1¬x<P2PxP0ranE
139 138 adantl i0..^P1-0-1PiPi+1ranEPP2P0ranEE:domE1-1RPWordV2Px0..^P1¬x<P2PxP0ranE
140 139 adantl lastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEE:domE1-1RPWordV2Px0..^P1¬x<P2PxP0ranE
141 140 com12 E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1¬x<P2PxP0ranE
142 141 imp31 E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1¬x<P2PxP0ranE
143 142 impcom ¬x<P2E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1PxP0ranE
144 f1ocnvdm E:domE1-1 ontoranEPxP0ranEE-1PxP0domE
145 99 143 144 syl2anc ¬x<P2E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1E-1PxP0domE
146 98 145 jca ¬x<P2E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1¬x<P2E-1PxP0domE
147 146 olcd ¬x<P2E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1x<P2E-1PxPx+1domE¬x<P2E-1PxP0domE
148 97 147 pm2.61ian E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1x<P2E-1PxPx+1domE¬x<P2E-1PxP0domE
149 ifel ifx<P2E-1PxPx+1E-1PxP0domEx<P2E-1PxPx+1domE¬x<P2E-1PxP0domE
150 148 149 sylibr E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEx0..^P1ifx<P2E-1PxPx+1E-1PxP0domE
151 150 1 fmptd E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEF:0..^P1domE
152 iswrdi F:0..^P1domEFWorddomE
153 151 152 syl E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEFWorddomE
154 wrdf PWordVP:0..^PV
155 154 adantr PWordV2PP:0..^PV
156 1 clwlkclwwlklem2a2 PWordV2PF=P1
157 fzoval P0..^P=0P1
158 8 22 157 3syl PWordV0..^P=0P1
159 oveq2 P1=F0P1=0F
160 159 eqcoms F=P10P1=0F
161 158 160 sylan9eq PWordVF=P10..^P=0F
162 156 161 syldan PWordV2P0..^P=0F
163 162 feq2d PWordV2PP:0..^PVP:0FV
164 155 163 mpbid PWordV2PP:0FV
165 164 3adant1 E:domE1-1RPWordV2PP:0FV
166 165 adantr E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEP:0FV
167 clwlkclwwlklem2a1 PWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEi0..^P1PiPi+1ranE
168 167 3adant1 E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEi0..^P1PiPi+1ranE
169 168 imp E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEi0..^P1PiPi+1ranE
170 156 3adant1 E:domE1-1RPWordV2PF=P1
171 170 adantr E:domE1-1RPWordV2PlastSP=P0F=P1
172 1 clwlkclwwlklem2a4 E:domE1-1RPWordV2PlastSP=P0i0..^P1PiPi+1ranEEFi=PiPi+1
173 172 impl E:domE1-1RPWordV2PlastSP=P0i0..^P1PiPi+1ranEEFi=PiPi+1
174 173 ralimdva E:domE1-1RPWordV2PlastSP=P0i0..^P1PiPi+1ranEi0..^P1EFi=PiPi+1
175 oveq2 F=P10..^F=0..^P1
176 175 raleqdv F=P1i0..^FEFi=PiPi+1i0..^P1EFi=PiPi+1
177 176 imbi2d F=P1i0..^P1PiPi+1ranEi0..^FEFi=PiPi+1i0..^P1PiPi+1ranEi0..^P1EFi=PiPi+1
178 174 177 imbitrrid F=P1E:domE1-1RPWordV2PlastSP=P0i0..^P1PiPi+1ranEi0..^FEFi=PiPi+1
179 171 178 mpcom E:domE1-1RPWordV2PlastSP=P0i0..^P1PiPi+1ranEi0..^FEFi=PiPi+1
180 179 adantrr E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEi0..^P1PiPi+1ranEi0..^FEFi=PiPi+1
181 169 180 mpd E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEi0..^FEFi=PiPi+1
182 153 166 181 3jca E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEFWorddomEP:0FVi0..^FEFi=PiPi+1
183 1 clwlkclwwlklem2a3 PWordV2PPF=lastSP
184 183 3adant1 E:domE1-1RPWordV2PPF=lastSP
185 184 eqcomd E:domE1-1RPWordV2PlastSP=PF
186 185 eqeq2d E:domE1-1RPWordV2PP0=lastSPP0=PF
187 186 biimpcd P0=lastSPE:domE1-1RPWordV2PP0=PF
188 187 eqcoms lastSP=P0E:domE1-1RPWordV2PP0=PF
189 188 adantr lastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEE:domE1-1RPWordV2PP0=PF
190 189 impcom E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEP0=PF
191 182 190 jca E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEFWorddomEP:0FVi0..^FEFi=PiPi+1P0=PF
192 191 ex E:domE1-1RPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranEFWorddomEP:0FVi0..^FEFi=PiPi+1P0=PF