Database
BASIC TOPOLOGY
Metric spaces
Topological definitions using the reals
cnheiborlem
Next ⟩
cnheibor
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnheiborlem
Description:
Lemma for
cnheibor
.
(Contributed by
Mario Carneiro
, 14-Sep-2014)
Ref
Expression
Hypotheses
cnheibor.2
⊢
J
=
TopOpen
ℂ
fld
cnheibor.3
⊢
T
=
J
↾
𝑡
X
cnheibor.4
⊢
F
=
x
∈
ℝ
,
y
∈
ℝ
⟼
x
+
i
y
cnheibor.5
⊢
Y
=
F
−
R
R
×
−
R
R
Assertion
cnheiborlem
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
T
∈
Comp
Proof
Step
Hyp
Ref
Expression
1
cnheibor.2
⊢
J
=
TopOpen
ℂ
fld
2
cnheibor.3
⊢
T
=
J
↾
𝑡
X
3
cnheibor.4
⊢
F
=
x
∈
ℝ
,
y
∈
ℝ
⟼
x
+
i
y
4
cnheibor.5
⊢
Y
=
F
−
R
R
×
−
R
R
5
1
cnfldtop
⊢
J
∈
Top
6
3
cnref1o
⊢
F
:
ℝ
2
⟶
1-1 onto
ℂ
7
f1ofn
⊢
F
:
ℝ
2
⟶
1-1 onto
ℂ
→
F
Fn
ℝ
2
8
elpreima
⊢
F
Fn
ℝ
2
→
u
∈
F
-1
X
↔
u
∈
ℝ
2
∧
F
u
∈
X
9
6
7
8
mp2b
⊢
u
∈
F
-1
X
↔
u
∈
ℝ
2
∧
F
u
∈
X
10
1st2nd2
⊢
u
∈
ℝ
2
→
u
=
1
st
u
2
nd
u
11
10
ad2antrl
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
u
=
1
st
u
2
nd
u
12
xp1st
⊢
u
∈
ℝ
2
→
1
st
u
∈
ℝ
13
12
ad2antrl
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
1
st
u
∈
ℝ
14
13
recnd
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
1
st
u
∈
ℂ
15
14
abscld
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
1
st
u
∈
ℝ
16
1
cnfldtopon
⊢
J
∈
TopOn
ℂ
17
16
toponunii
⊢
ℂ
=
⋃
J
18
17
cldss
⊢
X
∈
Clsd
J
→
X
⊆
ℂ
19
18
adantr
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
X
⊆
ℂ
20
19
adantr
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
X
⊆
ℂ
21
simprr
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
F
u
∈
X
22
20
21
sseldd
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
F
u
∈
ℂ
23
22
abscld
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
F
u
∈
ℝ
24
simplrl
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
R
∈
ℝ
25
simprl
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
u
∈
ℝ
2
26
f1ocnvfv1
⊢
F
:
ℝ
2
⟶
1-1 onto
ℂ
∧
u
∈
ℝ
2
→
F
-1
F
u
=
u
27
6
25
26
sylancr
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
F
-1
F
u
=
u
28
fveq2
⊢
z
=
F
u
→
ℜ
z
=
ℜ
F
u
29
fveq2
⊢
z
=
F
u
→
ℑ
z
=
ℑ
F
u
30
28
29
opeq12d
⊢
z
=
F
u
→
ℜ
z
ℑ
z
=
ℜ
F
u
ℑ
F
u
31
3
cnrecnv
⊢
F
-1
=
z
∈
ℂ
⟼
ℜ
z
ℑ
z
32
opex
⊢
ℜ
F
u
ℑ
F
u
∈
V
33
30
31
32
fvmpt
⊢
F
u
∈
ℂ
→
F
-1
F
u
=
ℜ
F
u
ℑ
F
u
34
22
33
syl
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
F
-1
F
u
=
ℜ
F
u
ℑ
F
u
35
27
34
eqtr3d
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
u
=
ℜ
F
u
ℑ
F
u
36
35
fveq2d
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
1
st
u
=
1
st
ℜ
F
u
ℑ
F
u
37
fvex
⊢
ℜ
F
u
∈
V
38
fvex
⊢
ℑ
F
u
∈
V
39
37
38
op1st
⊢
1
st
ℜ
F
u
ℑ
F
u
=
ℜ
F
u
40
36
39
eqtrdi
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
1
st
u
=
ℜ
F
u
41
40
fveq2d
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
1
st
u
=
ℜ
F
u
42
absrele
⊢
F
u
∈
ℂ
→
ℜ
F
u
≤
F
u
43
22
42
syl
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
ℜ
F
u
≤
F
u
44
41
43
eqbrtrd
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
1
st
u
≤
F
u
45
fveq2
⊢
z
=
F
u
→
z
=
F
u
46
45
breq1d
⊢
z
=
F
u
→
z
≤
R
↔
F
u
≤
R
47
simplrr
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
∀
z
∈
X
z
≤
R
48
46
47
21
rspcdva
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
F
u
≤
R
49
15
23
24
44
48
letrd
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
1
st
u
≤
R
50
13
24
absled
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
1
st
u
≤
R
↔
−
R
≤
1
st
u
∧
1
st
u
≤
R
51
49
50
mpbid
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
−
R
≤
1
st
u
∧
1
st
u
≤
R
52
51
simpld
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
−
R
≤
1
st
u
53
51
simprd
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
1
st
u
≤
R
54
renegcl
⊢
R
∈
ℝ
→
−
R
∈
ℝ
55
24
54
syl
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
−
R
∈
ℝ
56
elicc2
⊢
−
R
∈
ℝ
∧
R
∈
ℝ
→
1
st
u
∈
−
R
R
↔
1
st
u
∈
ℝ
∧
−
R
≤
1
st
u
∧
1
st
u
≤
R
57
55
24
56
syl2anc
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
1
st
u
∈
−
R
R
↔
1
st
u
∈
ℝ
∧
−
R
≤
1
st
u
∧
1
st
u
≤
R
58
13
52
53
57
mpbir3and
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
1
st
u
∈
−
R
R
59
xp2nd
⊢
u
∈
ℝ
2
→
2
nd
u
∈
ℝ
60
59
ad2antrl
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
2
nd
u
∈
ℝ
61
60
recnd
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
2
nd
u
∈
ℂ
62
61
abscld
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
2
nd
u
∈
ℝ
63
35
fveq2d
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
2
nd
u
=
2
nd
ℜ
F
u
ℑ
F
u
64
37
38
op2nd
⊢
2
nd
ℜ
F
u
ℑ
F
u
=
ℑ
F
u
65
63
64
eqtrdi
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
2
nd
u
=
ℑ
F
u
66
65
fveq2d
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
2
nd
u
=
ℑ
F
u
67
absimle
⊢
F
u
∈
ℂ
→
ℑ
F
u
≤
F
u
68
22
67
syl
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
ℑ
F
u
≤
F
u
69
66
68
eqbrtrd
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
2
nd
u
≤
F
u
70
62
23
24
69
48
letrd
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
2
nd
u
≤
R
71
60
24
absled
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
2
nd
u
≤
R
↔
−
R
≤
2
nd
u
∧
2
nd
u
≤
R
72
70
71
mpbid
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
−
R
≤
2
nd
u
∧
2
nd
u
≤
R
73
72
simpld
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
−
R
≤
2
nd
u
74
72
simprd
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
2
nd
u
≤
R
75
elicc2
⊢
−
R
∈
ℝ
∧
R
∈
ℝ
→
2
nd
u
∈
−
R
R
↔
2
nd
u
∈
ℝ
∧
−
R
≤
2
nd
u
∧
2
nd
u
≤
R
76
55
24
75
syl2anc
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
2
nd
u
∈
−
R
R
↔
2
nd
u
∈
ℝ
∧
−
R
≤
2
nd
u
∧
2
nd
u
≤
R
77
60
73
74
76
mpbir3and
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
2
nd
u
∈
−
R
R
78
58
77
opelxpd
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
1
st
u
2
nd
u
∈
−
R
R
×
−
R
R
79
11
78
eqeltrd
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
∧
u
∈
ℝ
2
∧
F
u
∈
X
→
u
∈
−
R
R
×
−
R
R
80
79
ex
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
u
∈
ℝ
2
∧
F
u
∈
X
→
u
∈
−
R
R
×
−
R
R
81
9
80
biimtrid
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
u
∈
F
-1
X
→
u
∈
−
R
R
×
−
R
R
82
81
ssrdv
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
F
-1
X
⊆
−
R
R
×
−
R
R
83
f1ofun
⊢
F
:
ℝ
2
⟶
1-1 onto
ℂ
→
Fun
F
84
6
83
ax-mp
⊢
Fun
F
85
f1ofo
⊢
F
:
ℝ
2
⟶
1-1 onto
ℂ
→
F
:
ℝ
2
⟶
onto
ℂ
86
forn
⊢
F
:
ℝ
2
⟶
onto
ℂ
→
ran
F
=
ℂ
87
6
85
86
mp2b
⊢
ran
F
=
ℂ
88
19
87
sseqtrrdi
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
X
⊆
ran
F
89
funimass1
⊢
Fun
F
∧
X
⊆
ran
F
→
F
-1
X
⊆
−
R
R
×
−
R
R
→
X
⊆
F
−
R
R
×
−
R
R
90
84
88
89
sylancr
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
F
-1
X
⊆
−
R
R
×
−
R
R
→
X
⊆
F
−
R
R
×
−
R
R
91
82
90
mpd
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
X
⊆
F
−
R
R
×
−
R
R
92
91
4
sseqtrrdi
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
X
⊆
Y
93
eqid
⊢
topGen
ran
.
=
topGen
ran
.
94
3
93
1
cnrehmeo
⊢
F
∈
topGen
ran
.
×
t
topGen
ran
.
Homeo
J
95
imaexg
⊢
F
∈
topGen
ran
.
×
t
topGen
ran
.
Homeo
J
→
F
−
R
R
×
−
R
R
∈
V
96
94
95
ax-mp
⊢
F
−
R
R
×
−
R
R
∈
V
97
4
96
eqeltri
⊢
Y
∈
V
98
97
a1i
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
Y
∈
V
99
restabs
⊢
J
∈
Top
∧
X
⊆
Y
∧
Y
∈
V
→
J
↾
𝑡
Y
↾
𝑡
X
=
J
↾
𝑡
X
100
5
92
98
99
mp3an2i
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
J
↾
𝑡
Y
↾
𝑡
X
=
J
↾
𝑡
X
101
100
2
eqtr4di
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
J
↾
𝑡
Y
↾
𝑡
X
=
T
102
4
oveq2i
⊢
J
↾
𝑡
Y
=
J
↾
𝑡
F
−
R
R
×
−
R
R
103
ishmeo
⊢
F
∈
topGen
ran
.
×
t
topGen
ran
.
Homeo
J
↔
F
∈
topGen
ran
.
×
t
topGen
ran
.
Cn
J
∧
F
-1
∈
J
Cn
topGen
ran
.
×
t
topGen
ran
.
104
94
103
mpbi
⊢
F
∈
topGen
ran
.
×
t
topGen
ran
.
Cn
J
∧
F
-1
∈
J
Cn
topGen
ran
.
×
t
topGen
ran
.
105
104
simpli
⊢
F
∈
topGen
ran
.
×
t
topGen
ran
.
Cn
J
106
iccssre
⊢
−
R
∈
ℝ
∧
R
∈
ℝ
→
−
R
R
⊆
ℝ
107
54
106
mpancom
⊢
R
∈
ℝ
→
−
R
R
⊆
ℝ
108
1
93
rerest
⊢
−
R
R
⊆
ℝ
→
J
↾
𝑡
−
R
R
=
topGen
ran
.
↾
𝑡
−
R
R
109
107
108
syl
⊢
R
∈
ℝ
→
J
↾
𝑡
−
R
R
=
topGen
ran
.
↾
𝑡
−
R
R
110
109
109
oveq12d
⊢
R
∈
ℝ
→
J
↾
𝑡
−
R
R
×
t
J
↾
𝑡
−
R
R
=
topGen
ran
.
↾
𝑡
−
R
R
×
t
topGen
ran
.
↾
𝑡
−
R
R
111
retop
⊢
topGen
ran
.
∈
Top
112
ovex
⊢
−
R
R
∈
V
113
txrest
⊢
topGen
ran
.
∈
Top
∧
topGen
ran
.
∈
Top
∧
−
R
R
∈
V
∧
−
R
R
∈
V
→
topGen
ran
.
×
t
topGen
ran
.
↾
𝑡
−
R
R
×
−
R
R
=
topGen
ran
.
↾
𝑡
−
R
R
×
t
topGen
ran
.
↾
𝑡
−
R
R
114
111
111
112
112
113
mp4an
⊢
topGen
ran
.
×
t
topGen
ran
.
↾
𝑡
−
R
R
×
−
R
R
=
topGen
ran
.
↾
𝑡
−
R
R
×
t
topGen
ran
.
↾
𝑡
−
R
R
115
110
114
eqtr4di
⊢
R
∈
ℝ
→
J
↾
𝑡
−
R
R
×
t
J
↾
𝑡
−
R
R
=
topGen
ran
.
×
t
topGen
ran
.
↾
𝑡
−
R
R
×
−
R
R
116
eqid
⊢
topGen
ran
.
↾
𝑡
−
R
R
=
topGen
ran
.
↾
𝑡
−
R
R
117
93
116
icccmp
⊢
−
R
∈
ℝ
∧
R
∈
ℝ
→
topGen
ran
.
↾
𝑡
−
R
R
∈
Comp
118
54
117
mpancom
⊢
R
∈
ℝ
→
topGen
ran
.
↾
𝑡
−
R
R
∈
Comp
119
109
118
eqeltrd
⊢
R
∈
ℝ
→
J
↾
𝑡
−
R
R
∈
Comp
120
txcmp
⊢
J
↾
𝑡
−
R
R
∈
Comp
∧
J
↾
𝑡
−
R
R
∈
Comp
→
J
↾
𝑡
−
R
R
×
t
J
↾
𝑡
−
R
R
∈
Comp
121
119
119
120
syl2anc
⊢
R
∈
ℝ
→
J
↾
𝑡
−
R
R
×
t
J
↾
𝑡
−
R
R
∈
Comp
122
115
121
eqeltrrd
⊢
R
∈
ℝ
→
topGen
ran
.
×
t
topGen
ran
.
↾
𝑡
−
R
R
×
−
R
R
∈
Comp
123
imacmp
⊢
F
∈
topGen
ran
.
×
t
topGen
ran
.
Cn
J
∧
topGen
ran
.
×
t
topGen
ran
.
↾
𝑡
−
R
R
×
−
R
R
∈
Comp
→
J
↾
𝑡
F
−
R
R
×
−
R
R
∈
Comp
124
105
122
123
sylancr
⊢
R
∈
ℝ
→
J
↾
𝑡
F
−
R
R
×
−
R
R
∈
Comp
125
102
124
eqeltrid
⊢
R
∈
ℝ
→
J
↾
𝑡
Y
∈
Comp
126
125
ad2antrl
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
J
↾
𝑡
Y
∈
Comp
127
imassrn
⊢
F
−
R
R
×
−
R
R
⊆
ran
F
128
4
127
eqsstri
⊢
Y
⊆
ran
F
129
f1of
⊢
F
:
ℝ
2
⟶
1-1 onto
ℂ
→
F
:
ℝ
2
⟶
ℂ
130
frn
⊢
F
:
ℝ
2
⟶
ℂ
→
ran
F
⊆
ℂ
131
6
129
130
mp2b
⊢
ran
F
⊆
ℂ
132
128
131
sstri
⊢
Y
⊆
ℂ
133
simpl
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
X
∈
Clsd
J
134
17
restcldi
⊢
Y
⊆
ℂ
∧
X
∈
Clsd
J
∧
X
⊆
Y
→
X
∈
Clsd
J
↾
𝑡
Y
135
132
133
92
134
mp3an2i
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
X
∈
Clsd
J
↾
𝑡
Y
136
cmpcld
⊢
J
↾
𝑡
Y
∈
Comp
∧
X
∈
Clsd
J
↾
𝑡
Y
→
J
↾
𝑡
Y
↾
𝑡
X
∈
Comp
137
126
135
136
syl2anc
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
J
↾
𝑡
Y
↾
𝑡
X
∈
Comp
138
101
137
eqeltrrd
⊢
X
∈
Clsd
J
∧
R
∈
ℝ
∧
∀
z
∈
X
z
≤
R
→
T
∈
Comp