Metamath Proof Explorer


Theorem cofcutr

Description: If X is the cut of A and B , then A is cofinal with (LX ) and B is coinitial with ( RX ) . Theorem 2.9 of Gonshor p. 12. (Contributed by Scott Fenton, 25-Sep-2024)

Ref Expression
Assertion cofcutr A s B X = A | s B x L X y A x s y z R X w B w s z

Proof

Step Hyp Ref Expression
1 bdayelon bday A | s B On
2 1 onssneli bday A | s B bday x ¬ bday x bday A | s B
3 leftssold L X Old bday X
4 3 a1i A s B X = A | s B L X Old bday X
5 4 sselda A s B X = A | s B x L X x Old bday X
6 bdayelon bday X On
7 leftssno L X No
8 7 a1i A s B X = A | s B L X No
9 8 sselda A s B X = A | s B x L X x No
10 oldbday bday X On x No x Old bday X bday x bday X
11 6 9 10 sylancr A s B X = A | s B x L X x Old bday X bday x bday X
12 5 11 mpbid A s B X = A | s B x L X bday x bday X
13 simplr A s B X = A | s B x L X X = A | s B
14 13 fveq2d A s B X = A | s B x L X bday X = bday A | s B
15 12 14 eleqtrd A s B X = A | s B x L X bday x bday A | s B
16 2 15 nsyl3 A s B X = A | s B x L X ¬ bday A | s B bday x
17 scutbday A s B bday A | s B = bday t No | A s t t s B
18 17 ad3antrrr A s B X = A | s B x L X A s x bday A | s B = bday t No | A s t t s B
19 bdayfn bday Fn No
20 ssrab2 t No | A s t t s B No
21 sneq t = x t = x
22 21 breq2d t = x A s t A s x
23 21 breq1d t = x t s B x s B
24 22 23 anbi12d t = x A s t t s B A s x x s B
25 9 adantr A s B X = A | s B x L X A s x x No
26 snex x V
27 26 a1i A s B X = A | s B x L X x V
28 ssltex2 A s B B V
29 28 ad2antrr A s B X = A | s B x L X B V
30 9 snssd A s B X = A | s B x L X x No
31 ssltss2 A s B B No
32 31 ad2antrr A s B X = A | s B x L X B No
33 9 adantr A s B X = A | s B x L X b B x No
34 simpr A s B X = A | s B X = A | s B
35 simpl A s B X = A | s B A s B
36 35 scutcld A s B X = A | s B A | s B No
37 34 36 eqeltrd A s B X = A | s B X No
38 37 ad2antrr A s B X = A | s B x L X b B X No
39 32 sselda A s B X = A | s B x L X b B b No
40 leftval L X = x Old bday X | x < s X
41 40 a1i A s B X = A | s B L X = x Old bday X | x < s X
42 41 eleq2d A s B X = A | s B x L X x x Old bday X | x < s X
43 rabid x x Old bday X | x < s X x Old bday X x < s X
44 42 43 bitrdi A s B X = A | s B x L X x Old bday X x < s X
45 44 simplbda A s B X = A | s B x L X x < s X
46 45 adantr A s B X = A | s B x L X b B x < s X
47 simpllr A s B X = A | s B x L X b B X = A | s B
48 scutcut A s B A | s B No A s A | s B A | s B s B
49 48 ad2antrr A s B X = A | s B x L X A | s B No A s A | s B A | s B s B
50 49 simp3d A s B X = A | s B x L X A | s B s B
51 ovex A | s B V
52 51 snid A | s B A | s B
53 ssltsepc A | s B s B A | s B A | s B b B A | s B < s b
54 52 53 mp3an2 A | s B s B b B A | s B < s b
55 50 54 sylan A s B X = A | s B x L X b B A | s B < s b
56 47 55 eqbrtrd A s B X = A | s B x L X b B X < s b
57 33 38 39 46 56 slttrd A s B X = A | s B x L X b B x < s b
58 57 3adant2 A s B X = A | s B x L X a x b B x < s b
59 velsn a x a = x
60 breq1 a = x a < s b x < s b
61 59 60 sylbi a x a < s b x < s b
62 61 3ad2ant2 A s B X = A | s B x L X a x b B a < s b x < s b
63 58 62 mpbird A s B X = A | s B x L X a x b B a < s b
64 27 29 30 32 63 ssltd A s B X = A | s B x L X x s B
65 64 anim1ci A s B X = A | s B x L X A s x A s x x s B
66 24 25 65 elrabd A s B X = A | s B x L X A s x x t No | A s t t s B
67 fnfvima bday Fn No t No | A s t t s B No x t No | A s t t s B bday x bday t No | A s t t s B
68 19 20 66 67 mp3an12i A s B X = A | s B x L X A s x bday x bday t No | A s t t s B
69 intss1 bday x bday t No | A s t t s B bday t No | A s t t s B bday x
70 68 69 syl A s B X = A | s B x L X A s x bday t No | A s t t s B bday x
71 18 70 eqsstrd A s B X = A | s B x L X A s x bday A | s B bday x
72 16 71 mtand A s B X = A | s B x L X ¬ A s x
73 ssltex1 A s B A V
74 73 ad3antrrr A s B X = A | s B x L X y A t x y < s t A V
75 74 26 jctir A s B X = A | s B x L X y A t x y < s t A V x V
76 ssltss1 A s B A No
77 76 ad3antrrr A s B X = A | s B x L X y A t x y < s t A No
78 9 adantr A s B X = A | s B x L X y A t x y < s t x No
79 78 snssd A s B X = A | s B x L X y A t x y < s t x No
80 simpr A s B X = A | s B x L X y A t x y < s t y A t x y < s t
81 77 79 80 3jca A s B X = A | s B x L X y A t x y < s t A No x No y A t x y < s t
82 brsslt A s x A V x V A No x No y A t x y < s t
83 75 81 82 sylanbrc A s B X = A | s B x L X y A t x y < s t A s x
84 72 83 mtand A s B X = A | s B x L X ¬ y A t x y < s t
85 rexnal t x ¬ y A y < s t ¬ t x y A y < s t
86 ralcom t x y A y < s t y A t x y < s t
87 85 86 xchbinx t x ¬ y A y < s t ¬ y A t x y < s t
88 84 87 sylibr A s B X = A | s B x L X t x ¬ y A y < s t
89 vex x V
90 breq2 t = x y < s t y < s x
91 90 ralbidv t = x y A y < s t y A y < s x
92 91 notbid t = x ¬ y A y < s t ¬ y A y < s x
93 89 92 rexsn t x ¬ y A y < s t ¬ y A y < s x
94 88 93 sylib A s B X = A | s B x L X ¬ y A y < s x
95 76 ad2antrr A s B X = A | s B x L X A No
96 95 sselda A s B X = A | s B x L X y A y No
97 slenlt x No y No x s y ¬ y < s x
98 9 96 97 syl2an2r A s B X = A | s B x L X y A x s y ¬ y < s x
99 98 rexbidva A s B X = A | s B x L X y A x s y y A ¬ y < s x
100 rexnal y A ¬ y < s x ¬ y A y < s x
101 99 100 bitrdi A s B X = A | s B x L X y A x s y ¬ y A y < s x
102 94 101 mpbird A s B X = A | s B x L X y A x s y
103 102 ralrimiva A s B X = A | s B x L X y A x s y
104 1 onssneli bday A | s B bday z ¬ bday z bday A | s B
105 rightssold R X Old bday X
106 105 a1i A s B X = A | s B R X Old bday X
107 106 sselda A s B X = A | s B z R X z Old bday X
108 rightssno R X No
109 108 a1i A s B X = A | s B R X No
110 109 sselda A s B X = A | s B z R X z No
111 oldbday bday X On z No z Old bday X bday z bday X
112 6 110 111 sylancr A s B X = A | s B z R X z Old bday X bday z bday X
113 107 112 mpbid A s B X = A | s B z R X bday z bday X
114 simplr A s B X = A | s B z R X X = A | s B
115 114 fveq2d A s B X = A | s B z R X bday X = bday A | s B
116 113 115 eleqtrd A s B X = A | s B z R X bday z bday A | s B
117 104 116 nsyl3 A s B X = A | s B z R X ¬ bday A | s B bday z
118 17 ad3antrrr A s B X = A | s B z R X z s B bday A | s B = bday t No | A s t t s B
119 sneq t = z t = z
120 119 breq2d t = z A s t A s z
121 119 breq1d t = z t s B z s B
122 120 121 anbi12d t = z A s t t s B A s z z s B
123 110 adantr A s B X = A | s B z R X z s B z No
124 73 ad2antrr A s B X = A | s B z R X A V
125 snex z V
126 125 a1i A s B X = A | s B z R X z V
127 76 ad2antrr A s B X = A | s B z R X A No
128 110 snssd A s B X = A | s B z R X z No
129 127 sselda A s B X = A | s B z R X a A a No
130 37 ad2antrr A s B X = A | s B z R X a A X No
131 110 adantr A s B X = A | s B z R X a A z No
132 48 ad2antrr A s B X = A | s B z R X A | s B No A s A | s B A | s B s B
133 132 simp2d A s B X = A | s B z R X A s A | s B
134 ssltsepc A s A | s B a A A | s B A | s B a < s A | s B
135 52 134 mp3an3 A s A | s B a A a < s A | s B
136 133 135 sylan A s B X = A | s B z R X a A a < s A | s B
137 simpllr A s B X = A | s B z R X a A X = A | s B
138 136 137 breqtrrd A s B X = A | s B z R X a A a < s X
139 rightval R X = z Old bday X | X < s z
140 139 a1i A s B X = A | s B R X = z Old bday X | X < s z
141 140 eleq2d A s B X = A | s B z R X z z Old bday X | X < s z
142 rabid z z Old bday X | X < s z z Old bday X X < s z
143 141 142 bitrdi A s B X = A | s B z R X z Old bday X X < s z
144 143 simplbda A s B X = A | s B z R X X < s z
145 144 adantr A s B X = A | s B z R X a A X < s z
146 129 130 131 138 145 slttrd A s B X = A | s B z R X a A a < s z
147 146 3adant3 A s B X = A | s B z R X a A b z a < s z
148 velsn b z b = z
149 breq2 b = z a < s b a < s z
150 148 149 sylbi b z a < s b a < s z
151 150 3ad2ant3 A s B X = A | s B z R X a A b z a < s b a < s z
152 147 151 mpbird A s B X = A | s B z R X a A b z a < s b
153 124 126 127 128 152 ssltd A s B X = A | s B z R X A s z
154 153 anim1i A s B X = A | s B z R X z s B A s z z s B
155 122 123 154 elrabd A s B X = A | s B z R X z s B z t No | A s t t s B
156 fnfvima bday Fn No t No | A s t t s B No z t No | A s t t s B bday z bday t No | A s t t s B
157 19 20 155 156 mp3an12i A s B X = A | s B z R X z s B bday z bday t No | A s t t s B
158 intss1 bday z bday t No | A s t t s B bday t No | A s t t s B bday z
159 157 158 syl A s B X = A | s B z R X z s B bday t No | A s t t s B bday z
160 118 159 eqsstrd A s B X = A | s B z R X z s B bday A | s B bday z
161 117 160 mtand A s B X = A | s B z R X ¬ z s B
162 28 ad3antrrr A s B X = A | s B z R X t z w B t < s w B V
163 162 125 jctil A s B X = A | s B z R X t z w B t < s w z V B V
164 128 adantr A s B X = A | s B z R X t z w B t < s w z No
165 31 ad3antrrr A s B X = A | s B z R X t z w B t < s w B No
166 simpr A s B X = A | s B z R X t z w B t < s w t z w B t < s w
167 164 165 166 3jca A s B X = A | s B z R X t z w B t < s w z No B No t z w B t < s w
168 brsslt z s B z V B V z No B No t z w B t < s w
169 163 167 168 sylanbrc A s B X = A | s B z R X t z w B t < s w z s B
170 161 169 mtand A s B X = A | s B z R X ¬ t z w B t < s w
171 rexnal t z ¬ w B t < s w ¬ t z w B t < s w
172 170 171 sylibr A s B X = A | s B z R X t z ¬ w B t < s w
173 vex z V
174 breq1 t = z t < s w z < s w
175 174 ralbidv t = z w B t < s w w B z < s w
176 175 notbid t = z ¬ w B t < s w ¬ w B z < s w
177 173 176 rexsn t z ¬ w B t < s w ¬ w B z < s w
178 172 177 sylib A s B X = A | s B z R X ¬ w B z < s w
179 31 ad2antrr A s B X = A | s B z R X B No
180 179 sselda A s B X = A | s B z R X w B w No
181 110 adantr A s B X = A | s B z R X w B z No
182 slenlt w No z No w s z ¬ z < s w
183 180 181 182 syl2anc A s B X = A | s B z R X w B w s z ¬ z < s w
184 183 rexbidva A s B X = A | s B z R X w B w s z w B ¬ z < s w
185 rexnal w B ¬ z < s w ¬ w B z < s w
186 184 185 bitrdi A s B X = A | s B z R X w B w s z ¬ w B z < s w
187 178 186 mpbird A s B X = A | s B z R X w B w s z
188 187 ralrimiva A s B X = A | s B z R X w B w s z
189 103 188 jca A s B X = A | s B x L X y A x s y z R X w B w s z