| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|
| 2 |
|
constrextdg2.1 |
|
| 3 |
|
constrextdg2.2 |
|
| 4 |
|
constrextdg2.l |
|
| 5 |
|
constrextdg2.n |
|
| 6 |
|
constrextdg2lem.1 |
|
| 7 |
|
constrextdg2lem.2 |
|
| 8 |
|
constrextdg2lem.3 |
|
| 9 |
|
uneq2 |
|
| 10 |
9
|
sseq1d |
|
| 11 |
10
|
anbi2d |
|
| 12 |
11
|
rexbidv |
|
| 13 |
|
uneq2 |
|
| 14 |
13
|
sseq1d |
|
| 15 |
14
|
anbi2d |
|
| 16 |
15
|
rexbidv |
|
| 17 |
|
fveq1 |
|
| 18 |
17
|
eqeq1d |
|
| 19 |
|
fveq2 |
|
| 20 |
19
|
sseq2d |
|
| 21 |
18 20
|
anbi12d |
|
| 22 |
21
|
cbvrexvw |
|
| 23 |
|
uneq2 |
|
| 24 |
23
|
sseq1d |
|
| 25 |
24
|
anbi2d |
|
| 26 |
25
|
rexbidv |
|
| 27 |
22 26
|
bitrid |
|
| 28 |
|
uneq2 |
|
| 29 |
28
|
sseq1d |
|
| 30 |
29
|
anbi2d |
|
| 31 |
30
|
rexbidv |
|
| 32 |
|
fveq1 |
|
| 33 |
32
|
eqeq1d |
|
| 34 |
|
fveq2 |
|
| 35 |
34
|
sseq2d |
|
| 36 |
33 35
|
anbi12d |
|
| 37 |
|
un0 |
|
| 38 |
37 8
|
eqsstrid |
|
| 39 |
7 38
|
jca |
|
| 40 |
36 6 39
|
rspcedvdw |
|
| 41 |
|
fveq1 |
|
| 42 |
41
|
eqeq1d |
|
| 43 |
|
fveq2 |
|
| 44 |
43
|
sseq2d |
|
| 45 |
42 44
|
anbi12d |
|
| 46 |
|
simpllr |
|
| 47 |
46
|
adantr |
|
| 48 |
|
simpllr |
|
| 49 |
|
simpr |
|
| 50 |
49
|
unssad |
|
| 51 |
50
|
adantr |
|
| 52 |
|
simplr |
|
| 53 |
52
|
unssbd |
|
| 54 |
|
simpr |
|
| 55 |
54
|
snssd |
|
| 56 |
53 55
|
unssd |
|
| 57 |
51 56
|
unssd |
|
| 58 |
48 57
|
jca |
|
| 59 |
45 47 58
|
rspcedvdw |
|
| 60 |
|
fveq1 |
|
| 61 |
60
|
eqeq1d |
|
| 62 |
|
fveq2 |
|
| 63 |
62
|
sseq2d |
|
| 64 |
61 63
|
anbi12d |
|
| 65 |
|
cnfldbas |
|
| 66 |
|
cndrng |
|
| 67 |
66
|
a1i |
|
| 68 |
46
|
chnwrd |
|
| 69 |
|
simpr |
|
| 70 |
69
|
fveq2d |
|
| 71 |
|
lsw0g |
|
| 72 |
70 71
|
eqtrdi |
|
| 73 |
|
simplr |
|
| 74 |
|
ssun1 |
|
| 75 |
|
nnon |
|
| 76 |
5 75
|
syl |
|
| 77 |
1 76
|
constr01 |
|
| 78 |
|
c0ex |
|
| 79 |
78
|
prnz |
|
| 80 |
|
ssn0 |
|
| 81 |
77 79 80
|
sylancl |
|
| 82 |
|
ssn0 |
|
| 83 |
74 81 82
|
sylancr |
|
| 84 |
83
|
ad2antrr |
|
| 85 |
|
ssn0 |
|
| 86 |
73 84 85
|
syl2anc |
|
| 87 |
86
|
neneqd |
|
| 88 |
72 87
|
pm2.65da |
|
| 89 |
88
|
neqned |
|
| 90 |
89
|
ad4antr |
|
| 91 |
90
|
an62ds |
|
| 92 |
|
lswcl |
|
| 93 |
68 91 92
|
syl2anc |
|
| 94 |
93
|
adantr |
|
| 95 |
65
|
sdrgss |
|
| 96 |
94 95
|
syl |
|
| 97 |
|
onsuc |
|
| 98 |
76 97
|
syl |
|
| 99 |
1 98
|
constrsscn |
|
| 100 |
99
|
ad6antr |
|
| 101 |
|
simp-4r |
|
| 102 |
101
|
eldifad |
|
| 103 |
102
|
adantr |
|
| 104 |
100 103
|
sseldd |
|
| 105 |
104
|
snssd |
|
| 106 |
96 105
|
unssd |
|
| 107 |
65 67 106
|
fldgensdrg |
|
| 108 |
46
|
adantr |
|
| 109 |
94
|
elexd |
|
| 110 |
107
|
elexd |
|
| 111 |
|
eqid |
|
| 112 |
|
eqid |
|
| 113 |
|
cnfldfld |
|
| 114 |
113
|
a1i |
|
| 115 |
65 111 112 114 94 105
|
fldgenfldext |
|
| 116 |
|
simpr |
|
| 117 |
2 3
|
breq12i |
|
| 118 |
|
oveq2 |
|
| 119 |
118
|
adantl |
|
| 120 |
|
oveq2 |
|
| 121 |
120
|
adantr |
|
| 122 |
119 121
|
breq12d |
|
| 123 |
117 122
|
bitrid |
|
| 124 |
2 3
|
oveq12i |
|
| 125 |
119 121
|
oveq12d |
|
| 126 |
124 125
|
eqtrid |
|
| 127 |
126
|
eqeq1d |
|
| 128 |
123 127
|
anbi12d |
|
| 129 |
128 4
|
brabga |
|
| 130 |
129
|
biimpar |
|
| 131 |
109 110 115 116 130
|
syl22anc |
|
| 132 |
131
|
olcd |
|
| 133 |
107 108 132
|
chnccats1 |
|
| 134 |
68
|
adantr |
|
| 135 |
107
|
s1cld |
|
| 136 |
|
hashgt0 |
|
| 137 |
46 91 136
|
syl2anc |
|
| 138 |
137
|
adantr |
|
| 139 |
|
ccatfv0 |
|
| 140 |
134 135 138 139
|
syl3anc |
|
| 141 |
|
simpllr |
|
| 142 |
140 141
|
eqtrd |
|
| 143 |
50
|
adantr |
|
| 144 |
|
ssun3 |
|
| 145 |
143 144
|
syl |
|
| 146 |
|
simplr |
|
| 147 |
146
|
unssbd |
|
| 148 |
|
ssun3 |
|
| 149 |
147 148
|
syl |
|
| 150 |
|
ssun2 |
|
| 151 |
150
|
a1i |
|
| 152 |
149 151
|
unssd |
|
| 153 |
145 152
|
unssd |
|
| 154 |
65 67 106
|
fldgenssid |
|
| 155 |
153 154
|
sstrd |
|
| 156 |
|
lswccats1 |
|
| 157 |
134 107 156
|
syl2anc |
|
| 158 |
155 157
|
sseqtrrd |
|
| 159 |
142 158
|
jca |
|
| 160 |
64 133 159
|
rspcedvdw |
|
| 161 |
76
|
ad5antr |
|
| 162 |
1 111 112 93 161 50 102
|
constrelextdg2 |
|
| 163 |
59 160 162
|
mpjaodan |
|
| 164 |
163
|
anasss |
|
| 165 |
164
|
rexlimdva2 |
|
| 166 |
165
|
anasss |
|
| 167 |
|
peano2 |
|
| 168 |
5 167
|
syl |
|
| 169 |
1 168
|
constrfin |
|
| 170 |
12 16 27 31 40 166 169
|
findcard2d |
|
| 171 |
|
simpr |
|
| 172 |
171
|
unssbd |
|
| 173 |
172
|
ex |
|
| 174 |
173
|
anim2d |
|
| 175 |
174
|
reximdva |
|
| 176 |
170 175
|
mpd |
|