Metamath Proof Explorer


Theorem cos9thpiminplylem2

Description: The polynomial ( ( X ^ 3 ) + ( ( -u 3 x. X ) + 1 ) ) has no rational roots. (Contributed by Thierry Arnoux, 9-Nov-2025)

Ref Expression
Hypothesis cos9thpiminplylem2.1 φ X
Assertion cos9thpiminplylem2 φ X 3 + -3 X + 1 0

Proof

Step Hyp Ref Expression
1 cos9thpiminplylem2.1 φ X
2 simpr φ p q X = p q p gcd q = 1 X = 0 X = 0
3 2 oveq1d φ p q X = p q p gcd q = 1 X = 0 X 3 = 0 3
4 3nn 3
5 4 a1i φ p q X = p q p gcd q = 1 X = 0 3
6 5 0expd φ p q X = p q p gcd q = 1 X = 0 0 3 = 0
7 3 6 eqtrd φ p q X = p q p gcd q = 1 X = 0 X 3 = 0
8 7 oveq1d φ p q X = p q p gcd q = 1 X = 0 X 3 + -3 X + 1 = 0 + -3 X + 1
9 2 oveq2d φ p q X = p q p gcd q = 1 X = 0 -3 X = -3 0
10 3cn 3
11 10 negcli 3
12 11 a1i φ p q X = p q p gcd q = 1 X = 0 3
13 12 mul01d φ p q X = p q p gcd q = 1 X = 0 -3 0 = 0
14 9 13 eqtr2d φ p q X = p q p gcd q = 1 X = 0 0 = -3 X
15 14 oveq1d φ p q X = p q p gcd q = 1 X = 0 0 + 1 = -3 X + 1
16 0p1e1 0 + 1 = 1
17 15 16 eqtr3di φ p q X = p q p gcd q = 1 X = 0 -3 X + 1 = 1
18 14 17 oveq12d φ p q X = p q p gcd q = 1 X = 0 0 + -3 X + 1 = -3 X + 1
19 8 18 17 3eqtrd φ p q X = p q p gcd q = 1 X = 0 X 3 + -3 X + 1 = 1
20 ax-1ne0 1 0
21 20 a1i φ p q X = p q p gcd q = 1 X = 0 1 0
22 19 21 eqnetrd φ p q X = p q p gcd q = 1 X = 0 X 3 + -3 X + 1 0
23 simpr φ p q X = p q X = p q
24 simplr φ p q p
25 24 zcnd φ p q p
26 25 adantr φ p q X = p q p
27 simpr φ p q q
28 27 nncnd φ p q q
29 28 adantr φ p q X = p q q
30 27 nnne0d φ p q q 0
31 30 adantr φ p q X = p q q 0
32 26 29 31 divcld φ p q X = p q p q
33 23 32 eqeltrd φ p q X = p q X
34 33 ad3antrrr φ p q X = p q p gcd q = 1 X 0 p = 1 X
35 simplr φ p q X = p q p gcd q = 1 X 0 p = 1 X 0
36 34 35 reccld φ p q X = p q p gcd q = 1 X 0 p = 1 1 X
37 3nn0 3 0
38 37 a1i φ p q X = p q p gcd q = 1 X 0 p = 1 3 0
39 36 38 expcld φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 3
40 11 a1i φ p q X = p q p gcd q = 1 X 0 p = 1 3
41 36 sqcld φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 2
42 40 41 mulcld φ p q X = p q p gcd q = 1 X 0 p = 1 -3 1 X 2
43 1cnd φ p q X = p q p gcd q = 1 X 0 p = 1 1
44 42 43 addcld φ p q X = p q p gcd q = 1 X 0 p = 1 -3 1 X 2 + 1
45 37 a1i φ p q X = p q 3 0
46 33 45 expcld φ p q X = p q X 3
47 46 ad3antrrr φ p q X = p q p gcd q = 1 X 0 p = 1 X 3
48 39 44 47 adddird φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 3 + -3 1 X 2 + 1 X 3 = 1 X 3 X 3 + -3 1 X 2 + 1 X 3
49 3z 3
50 49 a1i φ p q X = p q p gcd q = 1 X 0 p = 1 3
51 34 35 50 exprecd φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 3 = 1 X 3
52 51 oveq1d φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 3 X 3 = 1 X 3 X 3
53 34 35 50 expne0d φ p q X = p q p gcd q = 1 X 0 p = 1 X 3 0
54 47 53 recid2d φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 3 X 3 = 1
55 52 54 eqtrd φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 3 X 3 = 1
56 2z 2
57 56 a1i φ p q X = p q p gcd q = 1 X 0 p = 1 2
58 34 35 57 exprecd φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 2 = 1 X 2
59 58 oveq1d φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 2 X 3 = 1 X 2 X 3
60 34 sqcld φ p q X = p q p gcd q = 1 X 0 p = 1 X 2
61 34 35 57 expne0d φ p q X = p q p gcd q = 1 X 0 p = 1 X 2 0
62 47 60 61 divrec2d φ p q X = p q p gcd q = 1 X 0 p = 1 X 3 X 2 = 1 X 2 X 3
63 2cnd φ p q X = p q p gcd q = 1 X 0 p = 1 2
64 2p1e3 2 + 1 = 3
65 64 a1i φ p q X = p q p gcd q = 1 X 0 p = 1 2 + 1 = 3
66 65 eqcomd φ p q X = p q p gcd q = 1 X 0 p = 1 3 = 2 + 1
67 63 43 66 mvrladdd φ p q X = p q p gcd q = 1 X 0 p = 1 3 2 = 1
68 67 oveq2d φ p q X = p q p gcd q = 1 X 0 p = 1 X 3 2 = X 1
69 34 35 57 50 expsubd φ p q X = p q p gcd q = 1 X 0 p = 1 X 3 2 = X 3 X 2
70 34 exp1d φ p q X = p q p gcd q = 1 X 0 p = 1 X 1 = X
71 68 69 70 3eqtr3d φ p q X = p q p gcd q = 1 X 0 p = 1 X 3 X 2 = X
72 59 62 71 3eqtr2d φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 2 X 3 = X
73 72 oveq2d φ p q X = p q p gcd q = 1 X 0 p = 1 3 1 X 2 X 3 = 3 X
74 73 negeqd φ p q X = p q p gcd q = 1 X 0 p = 1 3 1 X 2 X 3 = 3 X
75 40 41 47 mulassd φ p q X = p q p gcd q = 1 X 0 p = 1 -3 1 X 2 X 3 = -3 1 X 2 X 3
76 10 a1i φ p q X = p q p gcd q = 1 X 0 p = 1 3
77 41 47 mulcld φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 2 X 3
78 76 77 mulneg1d φ p q X = p q p gcd q = 1 X 0 p = 1 -3 1 X 2 X 3 = 3 1 X 2 X 3
79 75 78 eqtrd φ p q X = p q p gcd q = 1 X 0 p = 1 -3 1 X 2 X 3 = 3 1 X 2 X 3
80 76 34 mulneg1d φ p q X = p q p gcd q = 1 X 0 p = 1 -3 X = 3 X
81 74 79 80 3eqtr4d φ p q X = p q p gcd q = 1 X 0 p = 1 -3 1 X 2 X 3 = -3 X
82 47 mullidd φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 3 = X 3
83 81 82 oveq12d φ p q X = p q p gcd q = 1 X 0 p = 1 -3 1 X 2 X 3 + 1 X 3 = -3 X + X 3
84 42 47 43 83 joinlmuladdmuld φ p q X = p q p gcd q = 1 X 0 p = 1 -3 1 X 2 + 1 X 3 = -3 X + X 3
85 55 84 oveq12d φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 3 X 3 + -3 1 X 2 + 1 X 3 = 1 + -3 X + X 3
86 40 34 mulcld φ p q X = p q p gcd q = 1 X 0 p = 1 -3 X
87 86 47 addcld φ p q X = p q p gcd q = 1 X 0 p = 1 -3 X + X 3
88 43 87 addcomd φ p q X = p q p gcd q = 1 X 0 p = 1 1 + -3 X + X 3 = -3 X + X 3 + 1
89 86 47 addcomd φ p q X = p q p gcd q = 1 X 0 p = 1 -3 X + X 3 = X 3 + -3 X
90 89 oveq1d φ p q X = p q p gcd q = 1 X 0 p = 1 -3 X + X 3 + 1 = X 3 + -3 X + 1
91 47 86 43 addassd φ p q X = p q p gcd q = 1 X 0 p = 1 X 3 + -3 X + 1 = X 3 + -3 X + 1
92 88 90 91 3eqtrd φ p q X = p q p gcd q = 1 X 0 p = 1 1 + -3 X + X 3 = X 3 + -3 X + 1
93 48 85 92 3eqtrd φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 3 + -3 1 X 2 + 1 X 3 = X 3 + -3 X + 1
94 39 44 addcld φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 3 + -3 1 X 2 + 1
95 simpllr φ p q X = p q p gcd q = 1 X 0 X = p q
96 95 adantr φ p q X = p q p gcd q = 1 X 0 p = 1 X = p q
97 96 oveq2d φ p q X = p q p gcd q = 1 X 0 p = 1 1 X = 1 p q
98 simp-6r φ p q X = p q p gcd q = 1 X 0 p = 1 p
99 98 zcnd φ p q X = p q p gcd q = 1 X 0 p = 1 p
100 simp-5r φ p q X = p q p gcd q = 1 X 0 p = 1 q
101 100 nncnd φ p q X = p q p gcd q = 1 X 0 p = 1 q
102 simpr φ p q X = p q p gcd q = 1 X 0 X 0
103 95 102 eqnetrrd φ p q X = p q p gcd q = 1 X 0 p q 0
104 25 ad3antrrr φ p q X = p q p gcd q = 1 X 0 p
105 28 ad3antrrr φ p q X = p q p gcd q = 1 X 0 q
106 30 ad3antrrr φ p q X = p q p gcd q = 1 X 0 q 0
107 104 105 106 divne0bd φ p q X = p q p gcd q = 1 X 0 p 0 p q 0
108 103 107 mpbird φ p q X = p q p gcd q = 1 X 0 p 0
109 108 adantr φ p q X = p q p gcd q = 1 X 0 p = 1 p 0
110 100 nnne0d φ p q X = p q p gcd q = 1 X 0 p = 1 q 0
111 99 101 109 110 recdivd φ p q X = p q p gcd q = 1 X 0 p = 1 1 p q = q p
112 101 99 109 divrecd φ p q X = p q p gcd q = 1 X 0 p = 1 q p = q 1 p
113 99 div1d φ p q X = p q p gcd q = 1 X 0 p = 1 p 1 = p
114 simpr φ p q X = p q p gcd q = 1 X 0 p = 1 p = 1
115 114 oveq2d φ p q X = p q p gcd q = 1 X 0 p = 1 p p = p 1
116 24 zred φ p q p
117 116 ad3antrrr φ p q X = p q p gcd q = 1 X 0 p
118 117 108 receqid φ p q X = p q p gcd q = 1 X 0 1 p = p p = 1
119 118 biimpar φ p q X = p q p gcd q = 1 X 0 p = 1 1 p = p
120 113 115 119 3eqtr4d φ p q X = p q p gcd q = 1 X 0 p = 1 p p = 1 p
121 120 oveq2d φ p q X = p q p gcd q = 1 X 0 p = 1 q p p = q 1 p
122 112 121 eqtr4d φ p q X = p q p gcd q = 1 X 0 p = 1 q p = q p p
123 97 111 122 3eqtrd φ p q X = p q p gcd q = 1 X 0 p = 1 1 X = q p p
124 98 zred φ p q X = p q p gcd q = 1 X 0 p = 1 p
125 sgnval2 p p 0 sgn p = p p
126 124 109 125 syl2anc φ p q X = p q p gcd q = 1 X 0 p = 1 sgn p = p p
127 126 oveq2d φ p q X = p q p gcd q = 1 X 0 p = 1 q sgn p = q p p
128 123 127 eqtr4d φ p q X = p q p gcd q = 1 X 0 p = 1 1 X = q sgn p
129 100 nnzd φ p q X = p q p gcd q = 1 X 0 p = 1 q
130 neg1z 1
131 130 a1i φ p q X = p q p gcd q = 1 X 0 p = 1 1
132 0zd φ p q X = p q p gcd q = 1 X 0 p = 1 0
133 1zzd φ p q X = p q p gcd q = 1 X 0 p = 1 1
134 131 132 133 tpssd φ p q X = p q p gcd q = 1 X 0 p = 1 1 0 1
135 124 rexrd φ p q X = p q p gcd q = 1 X 0 p = 1 p *
136 sgncl p * sgn p 1 0 1
137 135 136 syl φ p q X = p q p gcd q = 1 X 0 p = 1 sgn p 1 0 1
138 134 137 sseldd φ p q X = p q p gcd q = 1 X 0 p = 1 sgn p
139 129 138 zmulcld φ p q X = p q p gcd q = 1 X 0 p = 1 q sgn p
140 128 139 eqeltrd φ p q X = p q p gcd q = 1 X 0 p = 1 1 X
141 140 cos9thpiminplylem1 φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 3 + -3 1 X 2 + 1 0
142 94 47 141 53 mulne0d φ p q X = p q p gcd q = 1 X 0 p = 1 1 X 3 + -3 1 X 2 + 1 X 3 0
143 93 142 eqnetrrd φ p q X = p q p gcd q = 1 X 0 p = 1 X 3 + -3 X + 1 0
144 simplr φ p q X = p q p gcd q = 1 X 0 p 1 r r p r
145 1nprm ¬ 1
146 145 a1i φ p q X = p q p gcd q = 1 X 0 p 1 r r p ¬ 1
147 nelne2 r ¬ 1 r 1
148 144 146 147 syl2anc φ p q X = p q p gcd q = 1 X 0 p 1 r r p r 1
149 prmnn r r
150 149 ad3antlr φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 r
151 150 nnnn0d φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 r 0
152 150 nnzd φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 r
153 simp-5r φ p q X = p q p gcd q = 1 X 0 p
154 153 ad4antr φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 p
155 simp-8r φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 q
156 155 nnzd φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 q
157 simplr φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 r p
158 dvdsabsb r p r p r p
159 158 biimpar r p r p r p
160 152 154 157 159 syl21anc φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 r p
161 simpllr φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 r
162 4 a1i φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 3
163 49 a1i φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 3
164 155 nnnn0d φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 q 0
165 nn0sqcl q 0 q 2 0
166 164 165 syl φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 q 2 0
167 166 nn0zd φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 q 2
168 163 167 zmulcld φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 3 q 2
169 zsqcl p p 2
170 154 169 syl φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 p 2
171 168 170 zsubcld φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 3 q 2 p 2
172 152 154 171 160 dvdsmultr1d φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 r p 3 q 2 p 2
173 105 adantr φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q
174 37 a1i φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 3 0
175 173 174 expcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3
176 104 adantr φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p
177 10 a1i φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 3
178 173 sqcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 2
179 177 178 mulcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 3 q 2
180 176 sqcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 2
181 179 180 subcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 3 q 2 p 2
182 176 181 mulcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 3 q 2 p 2
183 95 adantr φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 X = p q
184 183 oveq1d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 X 3 = p q 3
185 184 oveq1d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 X 3 q 3 = p q 3 q 3
186 106 adantr φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 0
187 176 173 186 174 expdivd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p q 3 = p 3 q 3
188 187 oveq1d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p q 3 q 3 = p 3 q 3 q 3
189 176 174 expcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 3
190 49 a1i φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 3
191 173 186 190 expne0d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 0
192 189 175 191 divcan1d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 3 q 3 q 3 = p 3
193 185 188 192 3eqtrd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 X 3 q 3 = p 3
194 11 a1i φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 3
195 33 ad3antrrr φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 X
196 194 195 mulcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 -3 X
197 1cnd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 1
198 194 195 175 mulassd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 -3 X q 3 = -3 X q 3
199 183 oveq1d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 X q 3 = p q q 3
200 176 173 175 186 div32d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p q q 3 = p q 3 q
201 1zzd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 1
202 173 186 201 190 expsubd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 1 = q 3 q 1
203 3m1e2 3 1 = 2
204 203 a1i φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 3 1 = 2
205 204 oveq2d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 1 = q 2
206 173 exp1d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 1 = q
207 206 oveq2d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 q 1 = q 3 q
208 202 205 207 3eqtr3rd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 q = q 2
209 208 oveq2d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p q 3 q = p q 2
210 199 200 209 3eqtrd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 X q 3 = p q 2
211 210 oveq2d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 -3 X q 3 = -3 p q 2
212 198 211 eqtrd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 -3 X q 3 = -3 p q 2
213 175 mullidd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 1 q 3 = q 3
214 212 213 oveq12d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 -3 X q 3 + 1 q 3 = -3 p q 2 + q 3
215 196 175 197 214 joinlmuladdmuld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 -3 X + 1 q 3 = -3 p q 2 + q 3
216 193 215 oveq12d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 X 3 q 3 + -3 X + 1 q 3 = p 3 + -3 p q 2 + q 3
217 46 ad3antrrr φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 X 3
218 196 197 addcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 -3 X + 1
219 217 218 175 adddird φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 X 3 + -3 X + 1 q 3 = X 3 q 3 + -3 X + 1 q 3
220 176 179 180 subdid φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 3 q 2 p 2 = p 3 q 2 p p 2
221 2nn0 2 0
222 221 a1i φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 2 0
223 1nn0 1 0
224 223 a1i φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 1 0
225 176 222 224 expaddd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 1 + 2 = p 1 p 2
226 1p2e3 1 + 2 = 3
227 226 a1i φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 1 + 2 = 3
228 227 oveq2d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 1 + 2 = p 3
229 176 exp1d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 1 = p
230 229 oveq1d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 1 p 2 = p p 2
231 225 228 230 3eqtr3rd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p p 2 = p 3
232 231 oveq2d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 3 q 2 p p 2 = p 3 q 2 p 3
233 220 232 eqtrd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 3 q 2 p 2 = p 3 q 2 p 3
234 233 oveq2d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 p 3 q 2 p 2 = q 3 p 3 q 2 p 3
235 176 179 mulcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 3 q 2
236 175 235 189 subsub2d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 p 3 q 2 p 3 = q 3 + p 3 - p 3 q 2
237 175 189 235 addsub12d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 + p 3 - p 3 q 2 = p 3 + q 3 - p 3 q 2
238 175 235 subcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 p 3 q 2
239 189 238 addcomd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 3 + q 3 - p 3 q 2 = q 3 - p 3 q 2 + p 3
240 235 negcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 3 q 2
241 175 240 addcomd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 + p 3 q 2 = - p 3 q 2 + q 3
242 175 235 negsubd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 + p 3 q 2 = q 3 p 3 q 2
243 176 177 178 mul12d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 3 q 2 = 3 p q 2
244 243 negeqd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 3 q 2 = 3 p q 2
245 176 178 mulcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p q 2
246 177 245 mulneg1d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 -3 p q 2 = 3 p q 2
247 244 246 eqtr4d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 3 q 2 = -3 p q 2
248 247 oveq1d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 - p 3 q 2 + q 3 = -3 p q 2 + q 3
249 241 242 248 3eqtr3d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 p 3 q 2 = -3 p q 2 + q 3
250 249 oveq1d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 - p 3 q 2 + p 3 = -3 p q 2 + q 3 + p 3
251 239 250 eqtrd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 p 3 + q 3 - p 3 q 2 = -3 p q 2 + q 3 + p 3
252 236 237 251 3eqtrd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 p 3 q 2 p 3 = -3 p q 2 + q 3 + p 3
253 194 245 mulcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 -3 p q 2
254 253 175 addcld φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 -3 p q 2 + q 3
255 254 189 addcomd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 -3 p q 2 + q 3 + p 3 = p 3 + -3 p q 2 + q 3
256 234 252 255 3eqtrd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 p 3 q 2 p 2 = p 3 + -3 p q 2 + q 3
257 216 219 256 3eqtr4rd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 p 3 q 2 p 2 = X 3 + -3 X + 1 q 3
258 simpr φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 X 3 + -3 X + 1 = 0
259 258 oveq1d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 X 3 + -3 X + 1 q 3 = 0 q 3
260 175 mul02d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 0 q 3 = 0
261 257 259 260 3eqtrd φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 p 3 q 2 p 2 = 0
262 175 182 261 subeq0d φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 = 0 q 3 = p 3 q 2 p 2
263 262 ad5ant15 φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 q 3 = p 3 q 2 p 2
264 172 263 breqtrrd φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 r q 3
265 prmdvdsexp r q 3 r q 3 r q
266 265 biimpa r q 3 r q 3 r q
267 161 156 162 264 266 syl31anc φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 r q
268 dvdsgcd r p q r p r q r p gcd q
269 268 imp r p q r p r q r p gcd q
270 152 154 156 160 267 269 syl32anc φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 r p gcd q
271 simp-6r φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 p gcd q = 1
272 270 271 breqtrd φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 r 1
273 dvds1 r 0 r 1 r = 1
274 273 biimpa r 0 r 1 r = 1
275 151 272 274 syl2anc φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 = 0 r = 1
276 148 275 mteqand φ p q X = p q p gcd q = 1 X 0 p 1 r r p X 3 + -3 X + 1 0
277 nnabscl p p 0 p
278 153 108 277 syl2anc φ p q X = p q p gcd q = 1 X 0 p
279 eluz2b3 p 2 p p 1
280 exprmfct p 2 r r p
281 279 280 sylbir p p 1 r r p
282 278 281 sylan φ p q X = p q p gcd q = 1 X 0 p 1 r r p
283 276 282 r19.29a φ p q X = p q p gcd q = 1 X 0 p 1 X 3 + -3 X + 1 0
284 143 283 pm2.61dane φ p q X = p q p gcd q = 1 X 0 X 3 + -3 X + 1 0
285 22 284 pm2.61dane φ p q X = p q p gcd q = 1 X 3 + -3 X + 1 0
286 285 anasss φ p q X = p q p gcd q = 1 X 3 + -3 X + 1 0
287 elq2 X p q X = p q p gcd q = 1
288 1 287 syl φ p q X = p q p gcd q = 1
289 286 288 r19.29vva φ X 3 + -3 X + 1 0