Metamath Proof Explorer


Theorem cvmliftlem15

Description: Lemma for cvmlift . Discharge the assumptions of cvmliftlem14 . The set of all open subsets u of the unit interval such that G " u is contained in an even covering of some open set in J is a cover of II by the definition of a covering map, so by the Lebesgue number lemma lebnumii , there is a subdivision of the closed unit interval into N equal parts such that each part is entirely contained within one such open set of J . Then using finite choice ac6sfi to uniformly select one such subset and one even covering of each subset, we are ready to finish the proof with cvmliftlem14 . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmliftlem.b B = C
cvmliftlem.x X = J
cvmliftlem.f φ F C CovMap J
cvmliftlem.g φ G II Cn J
cvmliftlem.p φ P B
cvmliftlem.e φ F P = G 0
Assertion cvmliftlem15 φ ∃! f II Cn C F f = G f 0 = P

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmliftlem.b B = C
3 cvmliftlem.x X = J
4 cvmliftlem.f φ F C CovMap J
5 cvmliftlem.g φ G II Cn J
6 cvmliftlem.p φ P B
7 cvmliftlem.e φ F P = G 0
8 ssrab2 u II | j J s S j G u j II
9 5 ad2antrr φ x 0 1 j J G x j S j G II Cn J
10 simprl φ x 0 1 j J G x j S j j J
11 cnima G II Cn J j J G -1 j II
12 9 10 11 syl2anc φ x 0 1 j J G x j S j G -1 j II
13 simplr φ x 0 1 j J G x j S j x 0 1
14 simprrl φ x 0 1 j J G x j S j G x j
15 iiuni 0 1 = II
16 15 3 cnf G II Cn J G : 0 1 X
17 5 16 syl φ G : 0 1 X
18 17 ad2antrr φ x 0 1 j J G x j S j G : 0 1 X
19 ffn G : 0 1 X G Fn 0 1
20 elpreima G Fn 0 1 x G -1 j x 0 1 G x j
21 18 19 20 3syl φ x 0 1 j J G x j S j x G -1 j x 0 1 G x j
22 13 14 21 mpbir2and φ x 0 1 j J G x j S j x G -1 j
23 simprrr φ x 0 1 j J G x j S j S j
24 ffun G : 0 1 X Fun G
25 funimacnv Fun G G G -1 j = j ran G
26 18 24 25 3syl φ x 0 1 j J G x j S j G G -1 j = j ran G
27 inss1 j ran G j
28 26 27 eqsstrdi φ x 0 1 j J G x j S j G G -1 j j
29 28 ralrimivw φ x 0 1 j J G x j S j s S j G G -1 j j
30 r19.2z S j s S j G G -1 j j s S j G G -1 j j
31 23 29 30 syl2anc φ x 0 1 j J G x j S j s S j G G -1 j j
32 eleq2 u = G -1 j x u x G -1 j
33 imaeq2 u = G -1 j G u = G G -1 j
34 33 sseq1d u = G -1 j G u j G G -1 j j
35 34 rexbidv u = G -1 j s S j G u j s S j G G -1 j j
36 32 35 anbi12d u = G -1 j x u s S j G u j x G -1 j s S j G G -1 j j
37 36 rspcev G -1 j II x G -1 j s S j G G -1 j j u II x u s S j G u j
38 12 22 31 37 syl12anc φ x 0 1 j J G x j S j u II x u s S j G u j
39 4 adantr φ x 0 1 F C CovMap J
40 17 ffvelrnda φ x 0 1 G x X
41 1 3 cvmcov F C CovMap J G x X j J G x j S j
42 39 40 41 syl2anc φ x 0 1 j J G x j S j
43 38 42 reximddv φ x 0 1 j J u II x u s S j G u j
44 r19.42v j J x u s S j G u j x u j J s S j G u j
45 44 rexbii u II j J x u s S j G u j u II x u j J s S j G u j
46 rexcom j J u II x u s S j G u j u II j J x u s S j G u j
47 elunirab x u II | j J s S j G u j u II x u j J s S j G u j
48 45 46 47 3bitr4i j J u II x u s S j G u j x u II | j J s S j G u j
49 43 48 sylib φ x 0 1 x u II | j J s S j G u j
50 49 ex φ x 0 1 x u II | j J s S j G u j
51 50 ssrdv φ 0 1 u II | j J s S j G u j
52 uniss u II | j J s S j G u j II u II | j J s S j G u j II
53 8 52 mp1i φ u II | j J s S j G u j II
54 53 15 sseqtrrdi φ u II | j J s S j G u j 0 1
55 51 54 eqssd φ 0 1 = u II | j J s S j G u j
56 lebnumii u II | j J s S j G u j II 0 1 = u II | j J s S j G u j n k 1 n v u II | j J s S j G u j k 1 n k n v
57 8 55 56 sylancr φ n k 1 n v u II | j J s S j G u j k 1 n k n v
58 fzfi 1 n Fin
59 imaeq2 u = v G u = G v
60 59 sseq1d u = v G u j G v j
61 60 2rexbidv u = v j J s S j G u j j J s S j G v j
62 61 rexrab v u II | j J s S j G u j k 1 n k n v v II j J s S j G v j k 1 n k n v
63 vex j V
64 vex s V
65 63 64 op1std u = j s 1 st u = j
66 65 sseq2d u = j s G v 1 st u G v j
67 66 rexiunxp u j J j × S j G v 1 st u j J s S j G v j
68 imass2 k 1 n k n v G k 1 n k n G v
69 sstr2 G k 1 n k n G v G v 1 st u G k 1 n k n 1 st u
70 68 69 syl k 1 n k n v G v 1 st u G k 1 n k n 1 st u
71 70 reximdv k 1 n k n v u j J j × S j G v 1 st u u j J j × S j G k 1 n k n 1 st u
72 67 71 syl5bir k 1 n k n v j J s S j G v j u j J j × S j G k 1 n k n 1 st u
73 72 impcom j J s S j G v j k 1 n k n v u j J j × S j G k 1 n k n 1 st u
74 73 rexlimivw v II j J s S j G v j k 1 n k n v u j J j × S j G k 1 n k n 1 st u
75 62 74 sylbi v u II | j J s S j G u j k 1 n k n v u j J j × S j G k 1 n k n 1 st u
76 75 ralimi k 1 n v u II | j J s S j G u j k 1 n k n v k 1 n u j J j × S j G k 1 n k n 1 st u
77 fveq2 u = g k 1 st u = 1 st g k
78 77 sseq2d u = g k G k 1 n k n 1 st u G k 1 n k n 1 st g k
79 78 ac6sfi 1 n Fin k 1 n u j J j × S j G k 1 n k n 1 st u g g : 1 n j J j × S j k 1 n G k 1 n k n 1 st g k
80 58 76 79 sylancr k 1 n v u II | j J s S j G u j k 1 n k n v g g : 1 n j J j × S j k 1 n G k 1 n k n 1 st g k
81 4 ad2antrr φ n g : 1 n j J j × S j k 1 n G k 1 n k n 1 st g k F C CovMap J
82 5 ad2antrr φ n g : 1 n j J j × S j k 1 n G k 1 n k n 1 st g k G II Cn J
83 6 ad2antrr φ n g : 1 n j J j × S j k 1 n G k 1 n k n 1 st g k P B
84 7 ad2antrr φ n g : 1 n j J j × S j k 1 n G k 1 n k n 1 st g k F P = G 0
85 simplr φ n g : 1 n j J j × S j k 1 n G k 1 n k n 1 st g k n
86 simprl φ n g : 1 n j J j × S j k 1 n G k 1 n k n 1 st g k g : 1 n j J j × S j
87 sneq j = a j = a
88 fveq2 j = a S j = S a
89 87 88 xpeq12d j = a j × S j = a × S a
90 89 cbviunv j J j × S j = a J a × S a
91 feq3 j J j × S j = a J a × S a g : 1 n j J j × S j g : 1 n a J a × S a
92 90 91 ax-mp g : 1 n j J j × S j g : 1 n a J a × S a
93 86 92 sylib φ n g : 1 n j J j × S j k 1 n G k 1 n k n 1 st g k g : 1 n a J a × S a
94 simprr φ n g : 1 n j J j × S j k 1 n G k 1 n k n 1 st g k k 1 n G k 1 n k n 1 st g k
95 eqid topGen ran . = topGen ran .
96 2fveq3 t = z F ι c 2 nd g w | y w 1 n c -1 G t = F ι c 2 nd g w | y w 1 n c -1 G z
97 96 cbvmptv t w 1 n w n F ι c 2 nd g w | y w 1 n c -1 G t = z w 1 n w n F ι c 2 nd g w | y w 1 n c -1 G z
98 eleq2 c = b y w 1 n c y w 1 n b
99 98 cbvriotavw ι c 2 nd g w | y w 1 n c = ι b 2 nd g w | y w 1 n b
100 fveq1 y = x y w 1 n = x w 1 n
101 100 eleq1d y = x y w 1 n b x w 1 n b
102 101 riotabidv y = x ι b 2 nd g w | y w 1 n b = ι b 2 nd g w | x w 1 n b
103 99 102 syl5eq y = x ι c 2 nd g w | y w 1 n c = ι b 2 nd g w | x w 1 n b
104 103 reseq2d y = x F ι c 2 nd g w | y w 1 n c = F ι b 2 nd g w | x w 1 n b
105 104 cnveqd y = x F ι c 2 nd g w | y w 1 n c -1 = F ι b 2 nd g w | x w 1 n b -1
106 105 fveq1d y = x F ι c 2 nd g w | y w 1 n c -1 G z = F ι b 2 nd g w | x w 1 n b -1 G z
107 106 mpteq2dv y = x z w 1 n w n F ι c 2 nd g w | y w 1 n c -1 G z = z w 1 n w n F ι b 2 nd g w | x w 1 n b -1 G z
108 97 107 syl5eq y = x t w 1 n w n F ι c 2 nd g w | y w 1 n c -1 G t = z w 1 n w n F ι b 2 nd g w | x w 1 n b -1 G z
109 oveq1 w = m w 1 = m 1
110 109 oveq1d w = m w 1 n = m 1 n
111 oveq1 w = m w n = m n
112 110 111 oveq12d w = m w 1 n w n = m 1 n m n
113 2fveq3 w = m 2 nd g w = 2 nd g m
114 110 fveq2d w = m x w 1 n = x m 1 n
115 114 eleq1d w = m x w 1 n b x m 1 n b
116 113 115 riotaeqbidv w = m ι b 2 nd g w | x w 1 n b = ι b 2 nd g m | x m 1 n b
117 116 reseq2d w = m F ι b 2 nd g w | x w 1 n b = F ι b 2 nd g m | x m 1 n b
118 117 cnveqd w = m F ι b 2 nd g w | x w 1 n b -1 = F ι b 2 nd g m | x m 1 n b -1
119 118 fveq1d w = m F ι b 2 nd g w | x w 1 n b -1 G z = F ι b 2 nd g m | x m 1 n b -1 G z
120 112 119 mpteq12dv w = m z w 1 n w n F ι b 2 nd g w | x w 1 n b -1 G z = z m 1 n m n F ι b 2 nd g m | x m 1 n b -1 G z
121 108 120 cbvmpov y V , w t w 1 n w n F ι c 2 nd g w | y w 1 n c -1 G t = x V , m z m 1 n m n F ι b 2 nd g m | x m 1 n b -1 G z
122 seqeq2 y V , w t w 1 n w n F ι c 2 nd g w | y w 1 n c -1 G t = x V , m z m 1 n m n F ι b 2 nd g m | x m 1 n b -1 G z seq 0 y V , w t w 1 n w n F ι c 2 nd g w | y w 1 n c -1 G t I 0 0 P = seq 0 x V , m z m 1 n m n F ι b 2 nd g m | x m 1 n b -1 G z I 0 0 P
123 121 122 ax-mp seq 0 y V , w t w 1 n w n F ι c 2 nd g w | y w 1 n c -1 G t I 0 0 P = seq 0 x V , m z m 1 n m n F ι b 2 nd g m | x m 1 n b -1 G z I 0 0 P
124 eqid k = 1 n seq 0 y V , w t w 1 n w n F ι c 2 nd g w | y w 1 n c -1 G t I 0 0 P k = k = 1 n seq 0 y V , w t w 1 n w n F ι c 2 nd g w | y w 1 n c -1 G t I 0 0 P k
125 1 2 3 81 82 83 84 85 93 94 95 123 124 cvmliftlem14 φ n g : 1 n j J j × S j k 1 n G k 1 n k n 1 st g k ∃! f II Cn C F f = G f 0 = P
126 125 ex φ n g : 1 n j J j × S j k 1 n G k 1 n k n 1 st g k ∃! f II Cn C F f = G f 0 = P
127 126 exlimdv φ n g g : 1 n j J j × S j k 1 n G k 1 n k n 1 st g k ∃! f II Cn C F f = G f 0 = P
128 80 127 syl5 φ n k 1 n v u II | j J s S j G u j k 1 n k n v ∃! f II Cn C F f = G f 0 = P
129 128 rexlimdva φ n k 1 n v u II | j J s S j G u j k 1 n k n v ∃! f II Cn C F f = G f 0 = P
130 57 129 mpd φ ∃! f II Cn C F f = G f 0 = P