Metamath Proof Explorer


Theorem cvmsss2

Description: An open subset of an evenly covered set is evenly covered. (Contributed by Mario Carneiro, 7-Jul-2015)

Ref Expression
Hypothesis cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
Assertion cvmsss2 FCCovMapJVJVUSUSV

Proof

Step Hyp Ref Expression
1 cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 n0 SUxxSU
3 simpl2 FCCovMapJVJVUxSUVJ
4 simpl1 FCCovMapJVJVUxSUFCCovMapJ
5 cvmtop1 FCCovMapJCTop
6 4 5 syl FCCovMapJVJVUxSUCTop
7 6 adantr FCCovMapJVJVUxSUyxCTop
8 1 cvmsss xSUxC
9 8 adantl FCCovMapJVJVUxSUxC
10 9 sselda FCCovMapJVJVUxSUyxyC
11 cvmcn FCCovMapJFCCnJ
12 4 11 syl FCCovMapJVJVUxSUFCCnJ
13 cnima FCCnJVJF-1VC
14 12 3 13 syl2anc FCCovMapJVJVUxSUF-1VC
15 14 adantr FCCovMapJVJVUxSUyxF-1VC
16 inopn CTopyCF-1VCyF-1VC
17 7 10 15 16 syl3anc FCCovMapJVJVUxSUyxyF-1VC
18 17 fmpttd FCCovMapJVJVUxSUyxyF-1V:xC
19 18 frnd FCCovMapJVJVUxSUranyxyF-1VC
20 1 cvmsn0 xSUx
21 20 adantl FCCovMapJVJVUxSUx
22 dmmptg yxyF-1VVdomyxyF-1V=x
23 inex1g yxyF-1VV
24 22 23 mprg domyxyF-1V=x
25 24 eqeq1i domyxyF-1V=x=
26 dm0rn0 domyxyF-1V=ranyxyF-1V=
27 25 26 bitr3i x=ranyxyF-1V=
28 27 necon3bii xranyxyF-1V
29 21 28 sylib FCCovMapJVJVUxSUranyxyF-1V
30 19 29 jca FCCovMapJVJVUxSUranyxyF-1VCranyxyF-1V
31 inss2 yF-1VF-1V
32 elpw2g F-1VCyF-1V𝒫F-1VyF-1VF-1V
33 15 32 syl FCCovMapJVJVUxSUyxyF-1V𝒫F-1VyF-1VF-1V
34 31 33 mpbiri FCCovMapJVJVUxSUyxyF-1V𝒫F-1V
35 34 fmpttd FCCovMapJVJVUxSUyxyF-1V:x𝒫F-1V
36 35 frnd FCCovMapJVJVUxSUranyxyF-1V𝒫F-1V
37 sspwuni ranyxyF-1V𝒫F-1VranyxyF-1VF-1V
38 36 37 sylib FCCovMapJVJVUxSUranyxyF-1VF-1V
39 simpl3 FCCovMapJVJVUxSUVU
40 imass2 VUF-1VF-1U
41 39 40 syl FCCovMapJVJVUxSUF-1VF-1U
42 1 cvmsuni xSUx=F-1U
43 42 adantl FCCovMapJVJVUxSUx=F-1U
44 41 43 sseqtrrd FCCovMapJVJVUxSUF-1Vx
45 44 sselda FCCovMapJVJVUxSUzF-1Vzx
46 eqid tF-1V=tF-1V
47 ineq1 y=tyF-1V=tF-1V
48 47 rspceeqv txtF-1V=tF-1VyxtF-1V=yF-1V
49 46 48 mpan2 txyxtF-1V=yF-1V
50 49 ad2antrl FCCovMapJVJVUxSUzF-1VtxztyxtF-1V=yF-1V
51 vex tV
52 51 inex1 tF-1VV
53 eqid yxyF-1V=yxyF-1V
54 53 elrnmpt tF-1VVtF-1VranyxyF-1VyxtF-1V=yF-1V
55 52 54 ax-mp tF-1VranyxyF-1VyxtF-1V=yF-1V
56 50 55 sylibr FCCovMapJVJVUxSUzF-1VtxzttF-1VranyxyF-1V
57 simprr FCCovMapJVJVUxSUzF-1Vtxztzt
58 simplr FCCovMapJVJVUxSUzF-1VtxztzF-1V
59 57 58 elind FCCovMapJVJVUxSUzF-1VtxztztF-1V
60 eleq2 w=tF-1VzwztF-1V
61 60 rspcev tF-1VranyxyF-1VztF-1VwranyxyF-1Vzw
62 56 59 61 syl2anc FCCovMapJVJVUxSUzF-1VtxztwranyxyF-1Vzw
63 62 rexlimdvaa FCCovMapJVJVUxSUzF-1VtxztwranyxyF-1Vzw
64 eluni2 zxtxzt
65 eluni2 zranyxyF-1VwranyxyF-1Vzw
66 63 64 65 3imtr4g FCCovMapJVJVUxSUzF-1VzxzranyxyF-1V
67 45 66 mpd FCCovMapJVJVUxSUzF-1VzranyxyF-1V
68 38 67 eqelssd FCCovMapJVJVUxSUranyxyF-1V=F-1V
69 eldifsn zranyxyF-1VtF-1VzranyxyF-1VztF-1V
70 vex zV
71 53 elrnmpt zVzranyxyF-1Vyxz=yF-1V
72 70 71 ax-mp zranyxyF-1Vyxz=yF-1V
73 47 equcoms t=yyF-1V=tF-1V
74 73 necon3ai yF-1VtF-1V¬t=y
75 simpllr FCCovMapJVJVUxSUtxyxxSU
76 simplr FCCovMapJVJVUxSUtxyxtx
77 simpr FCCovMapJVJVUxSUtxyxyx
78 1 cvmsdisj xSUtxyxt=yty=
79 75 76 77 78 syl3anc FCCovMapJVJVUxSUtxyxt=yty=
80 79 ord FCCovMapJVJVUxSUtxyx¬t=yty=
81 inss1 tyF-1Vty
82 sseq0 tyF-1Vtyty=tyF-1V=
83 81 82 mpan ty=tyF-1V=
84 74 80 83 syl56 FCCovMapJVJVUxSUtxyxyF-1VtF-1VtyF-1V=
85 neeq1 z=yF-1VztF-1VyF-1VtF-1V
86 ineq2 z=yF-1VtF-1Vz=tF-1VyF-1V
87 inindir tyF-1V=tF-1VyF-1V
88 86 87 eqtr4di z=yF-1VtF-1Vz=tyF-1V
89 88 eqeq1d z=yF-1VtF-1Vz=tyF-1V=
90 85 89 imbi12d z=yF-1VztF-1VtF-1Vz=yF-1VtF-1VtyF-1V=
91 84 90 syl5ibrcom FCCovMapJVJVUxSUtxyxz=yF-1VztF-1VtF-1Vz=
92 91 rexlimdva FCCovMapJVJVUxSUtxyxz=yF-1VztF-1VtF-1Vz=
93 72 92 biimtrid FCCovMapJVJVUxSUtxzranyxyF-1VztF-1VtF-1Vz=
94 93 impd FCCovMapJVJVUxSUtxzranyxyF-1VztF-1VtF-1Vz=
95 69 94 biimtrid FCCovMapJVJVUxSUtxzranyxyF-1VtF-1VtF-1Vz=
96 95 ralrimiv FCCovMapJVJVUxSUtxzranyxyF-1VtF-1VtF-1Vz=
97 inss1 tF-1Vt
98 resabs1 tF-1VtFttF-1V=FtF-1V
99 97 98 ax-mp FttF-1V=FtF-1V
100 1 cvmshmeo xSUtxFtC𝑡tHomeoJ𝑡U
101 100 adantll FCCovMapJVJVUxSUtxFtC𝑡tHomeoJ𝑡U
102 6 adantr FCCovMapJVJVUxSUtxCTop
103 9 sselda FCCovMapJVJVUxSUtxtC
104 elssuni tCtC
105 103 104 syl FCCovMapJVJVUxSUtxtC
106 eqid C=C
107 106 restuni CToptCt=C𝑡t
108 102 105 107 syl2anc FCCovMapJVJVUxSUtxt=C𝑡t
109 97 108 sseqtrid FCCovMapJVJVUxSUtxtF-1VC𝑡t
110 eqid C𝑡t=C𝑡t
111 110 hmeores FtC𝑡tHomeoJ𝑡UtF-1VC𝑡tFttF-1VC𝑡t𝑡tF-1VHomeoJ𝑡U𝑡FttF-1V
112 101 109 111 syl2anc FCCovMapJVJVUxSUtxFttF-1VC𝑡t𝑡tF-1VHomeoJ𝑡U𝑡FttF-1V
113 99 112 eqeltrrid FCCovMapJVJVUxSUtxFtF-1VC𝑡t𝑡tF-1VHomeoJ𝑡U𝑡FttF-1V
114 97 a1i FCCovMapJVJVUxSUtxtF-1Vt
115 simpr FCCovMapJVJVUxSUtxtx
116 restabs CToptF-1VttxC𝑡t𝑡tF-1V=C𝑡tF-1V
117 102 114 115 116 syl3anc FCCovMapJVJVUxSUtxC𝑡t𝑡tF-1V=C𝑡tF-1V
118 incom tF-1V=F-1Vt
119 cnvresima Ft-1V=F-1Vt
120 118 119 eqtr4i tF-1V=Ft-1V
121 120 imaeq2i FttF-1V=FtFt-1V
122 4 adantr FCCovMapJVJVUxSUtxFCCovMapJ
123 simplr FCCovMapJVJVUxSUtxxSU
124 1 cvmsf1o FCCovMapJxSUtxFt:t1-1 ontoU
125 122 123 115 124 syl3anc FCCovMapJVJVUxSUtxFt:t1-1 ontoU
126 f1ofo Ft:t1-1 ontoUFt:tontoU
127 125 126 syl FCCovMapJVJVUxSUtxFt:tontoU
128 39 adantr FCCovMapJVJVUxSUtxVU
129 foimacnv Ft:tontoUVUFtFt-1V=V
130 127 128 129 syl2anc FCCovMapJVJVUxSUtxFtFt-1V=V
131 121 130 eqtrid FCCovMapJVJVUxSUtxFttF-1V=V
132 131 oveq2d FCCovMapJVJVUxSUtxJ𝑡U𝑡FttF-1V=J𝑡U𝑡V
133 cvmtop2 FCCovMapJJTop
134 4 133 syl FCCovMapJVJVUxSUJTop
135 1 cvmsrcl xSUUJ
136 135 adantl FCCovMapJVJVUxSUUJ
137 restabs JTopVUUJJ𝑡U𝑡V=J𝑡V
138 134 39 136 137 syl3anc FCCovMapJVJVUxSUJ𝑡U𝑡V=J𝑡V
139 138 adantr FCCovMapJVJVUxSUtxJ𝑡U𝑡V=J𝑡V
140 132 139 eqtrd FCCovMapJVJVUxSUtxJ𝑡U𝑡FttF-1V=J𝑡V
141 117 140 oveq12d FCCovMapJVJVUxSUtxC𝑡t𝑡tF-1VHomeoJ𝑡U𝑡FttF-1V=C𝑡tF-1VHomeoJ𝑡V
142 113 141 eleqtrd FCCovMapJVJVUxSUtxFtF-1VC𝑡tF-1VHomeoJ𝑡V
143 96 142 jca FCCovMapJVJVUxSUtxzranyxyF-1VtF-1VtF-1Vz=FtF-1VC𝑡tF-1VHomeoJ𝑡V
144 143 ralrimiva FCCovMapJVJVUxSUtxzranyxyF-1VtF-1VtF-1Vz=FtF-1VC𝑡tF-1VHomeoJ𝑡V
145 52 rgenw txtF-1VV
146 47 cbvmptv yxyF-1V=txtF-1V
147 sneq w=tF-1Vw=tF-1V
148 147 difeq2d w=tF-1VranyxyF-1Vw=ranyxyF-1VtF-1V
149 ineq1 w=tF-1Vwz=tF-1Vz
150 149 eqeq1d w=tF-1Vwz=tF-1Vz=
151 148 150 raleqbidv w=tF-1VzranyxyF-1Vwwz=zranyxyF-1VtF-1VtF-1Vz=
152 reseq2 w=tF-1VFw=FtF-1V
153 oveq2 w=tF-1VC𝑡w=C𝑡tF-1V
154 153 oveq1d w=tF-1VC𝑡wHomeoJ𝑡V=C𝑡tF-1VHomeoJ𝑡V
155 152 154 eleq12d w=tF-1VFwC𝑡wHomeoJ𝑡VFtF-1VC𝑡tF-1VHomeoJ𝑡V
156 151 155 anbi12d w=tF-1VzranyxyF-1Vwwz=FwC𝑡wHomeoJ𝑡VzranyxyF-1VtF-1VtF-1Vz=FtF-1VC𝑡tF-1VHomeoJ𝑡V
157 146 156 ralrnmptw txtF-1VVwranyxyF-1VzranyxyF-1Vwwz=FwC𝑡wHomeoJ𝑡VtxzranyxyF-1VtF-1VtF-1Vz=FtF-1VC𝑡tF-1VHomeoJ𝑡V
158 145 157 ax-mp wranyxyF-1VzranyxyF-1Vwwz=FwC𝑡wHomeoJ𝑡VtxzranyxyF-1VtF-1VtF-1Vz=FtF-1VC𝑡tF-1VHomeoJ𝑡V
159 144 158 sylibr FCCovMapJVJVUxSUwranyxyF-1VzranyxyF-1Vwwz=FwC𝑡wHomeoJ𝑡V
160 68 159 jca FCCovMapJVJVUxSUranyxyF-1V=F-1VwranyxyF-1VzranyxyF-1Vwwz=FwC𝑡wHomeoJ𝑡V
161 1 cvmscbv S=aJb𝒫C|b=F-1awbzbwwz=FwC𝑡wHomeoJ𝑡a
162 161 cvmsval CTopranyxyF-1VSVVJranyxyF-1VCranyxyF-1VranyxyF-1V=F-1VwranyxyF-1VzranyxyF-1Vwwz=FwC𝑡wHomeoJ𝑡V
163 6 162 syl FCCovMapJVJVUxSUranyxyF-1VSVVJranyxyF-1VCranyxyF-1VranyxyF-1V=F-1VwranyxyF-1VzranyxyF-1Vwwz=FwC𝑡wHomeoJ𝑡V
164 3 30 160 163 mpbir3and FCCovMapJVJVUxSUranyxyF-1VSV
165 164 ne0d FCCovMapJVJVUxSUSV
166 165 ex FCCovMapJVJVUxSUSV
167 166 exlimdv FCCovMapJVJVUxxSUSV
168 2 167 biimtrid FCCovMapJVJVUSUSV