Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add Countable Choice and Dependent Choice
Introduce the Axiom of Countable Choice
domtriomlem
Next ⟩
domtriom
Metamath Proof Explorer
Ascii
Unicode
Theorem
domtriomlem
Description:
Lemma for
domtriom
.
(Contributed by
Mario Carneiro
, 9-Feb-2013)
Ref
Expression
Hypotheses
domtriomlem.1
⊢
A
∈
V
domtriomlem.2
⊢
B
=
y
|
y
⊆
A
∧
y
≈
𝒫
n
domtriomlem.3
ω
⊢
C
=
n
∈
ω
⟼
b
n
∖
⋃
k
∈
n
b
k
Assertion
domtriomlem
ω
⊢
¬
A
∈
Fin
→
ω
≼
A
Proof
Step
Hyp
Ref
Expression
1
domtriomlem.1
⊢
A
∈
V
2
domtriomlem.2
⊢
B
=
y
|
y
⊆
A
∧
y
≈
𝒫
n
3
domtriomlem.3
ω
⊢
C
=
n
∈
ω
⟼
b
n
∖
⋃
k
∈
n
b
k
4
1
pwex
⊢
𝒫
A
∈
V
5
simpl
⊢
y
⊆
A
∧
y
≈
𝒫
n
→
y
⊆
A
6
5
ss2abi
⊢
y
|
y
⊆
A
∧
y
≈
𝒫
n
⊆
y
|
y
⊆
A
7
df-pw
⊢
𝒫
A
=
y
|
y
⊆
A
8
6
7
sseqtrri
⊢
y
|
y
⊆
A
∧
y
≈
𝒫
n
⊆
𝒫
A
9
4
8
ssexi
⊢
y
|
y
⊆
A
∧
y
≈
𝒫
n
∈
V
10
2
9
eqeltri
⊢
B
∈
V
11
omex
ω
⊢
ω
∈
V
12
11
enref
ω
ω
⊢
ω
≈
ω
13
10
12
axcc3
ω
ω
⊢
∃
b
b
Fn
ω
∧
∀
n
∈
ω
B
≠
∅
→
b
n
∈
B
14
nfv
⊢
Ⅎ
n
¬
A
∈
Fin
15
nfra1
ω
⊢
Ⅎ
n
∀
n
∈
ω
B
≠
∅
→
b
n
∈
B
16
14
15
nfan
ω
⊢
Ⅎ
n
¬
A
∈
Fin
∧
∀
n
∈
ω
B
≠
∅
→
b
n
∈
B
17
nnfi
ω
⊢
n
∈
ω
→
n
∈
Fin
18
pwfi
⊢
n
∈
Fin
↔
𝒫
n
∈
Fin
19
17
18
sylib
ω
⊢
n
∈
ω
→
𝒫
n
∈
Fin
20
ficardom
ω
⊢
𝒫
n
∈
Fin
→
card
𝒫
n
∈
ω
21
isinf
ω
⊢
¬
A
∈
Fin
→
∀
m
∈
ω
∃
y
y
⊆
A
∧
y
≈
m
22
breq2
⊢
m
=
card
𝒫
n
→
y
≈
m
↔
y
≈
card
𝒫
n
23
22
anbi2d
⊢
m
=
card
𝒫
n
→
y
⊆
A
∧
y
≈
m
↔
y
⊆
A
∧
y
≈
card
𝒫
n
24
23
exbidv
⊢
m
=
card
𝒫
n
→
∃
y
y
⊆
A
∧
y
≈
m
↔
∃
y
y
⊆
A
∧
y
≈
card
𝒫
n
25
24
rspcv
ω
ω
⊢
card
𝒫
n
∈
ω
→
∀
m
∈
ω
∃
y
y
⊆
A
∧
y
≈
m
→
∃
y
y
⊆
A
∧
y
≈
card
𝒫
n
26
21
25
syl5
ω
⊢
card
𝒫
n
∈
ω
→
¬
A
∈
Fin
→
∃
y
y
⊆
A
∧
y
≈
card
𝒫
n
27
19
20
26
3syl
ω
⊢
n
∈
ω
→
¬
A
∈
Fin
→
∃
y
y
⊆
A
∧
y
≈
card
𝒫
n
28
finnum
⊢
𝒫
n
∈
Fin
→
𝒫
n
∈
dom
card
29
cardid2
⊢
𝒫
n
∈
dom
card
→
card
𝒫
n
≈
𝒫
n
30
entr
⊢
y
≈
card
𝒫
n
∧
card
𝒫
n
≈
𝒫
n
→
y
≈
𝒫
n
31
30
expcom
⊢
card
𝒫
n
≈
𝒫
n
→
y
≈
card
𝒫
n
→
y
≈
𝒫
n
32
19
28
29
31
4syl
ω
⊢
n
∈
ω
→
y
≈
card
𝒫
n
→
y
≈
𝒫
n
33
32
anim2d
ω
⊢
n
∈
ω
→
y
⊆
A
∧
y
≈
card
𝒫
n
→
y
⊆
A
∧
y
≈
𝒫
n
34
33
eximdv
ω
⊢
n
∈
ω
→
∃
y
y
⊆
A
∧
y
≈
card
𝒫
n
→
∃
y
y
⊆
A
∧
y
≈
𝒫
n
35
27
34
syld
ω
⊢
n
∈
ω
→
¬
A
∈
Fin
→
∃
y
y
⊆
A
∧
y
≈
𝒫
n
36
2
neeq1i
⊢
B
≠
∅
↔
y
|
y
⊆
A
∧
y
≈
𝒫
n
≠
∅
37
abn0
⊢
y
|
y
⊆
A
∧
y
≈
𝒫
n
≠
∅
↔
∃
y
y
⊆
A
∧
y
≈
𝒫
n
38
36
37
bitri
⊢
B
≠
∅
↔
∃
y
y
⊆
A
∧
y
≈
𝒫
n
39
35
38
syl6ibr
ω
⊢
n
∈
ω
→
¬
A
∈
Fin
→
B
≠
∅
40
39
com12
ω
⊢
¬
A
∈
Fin
→
n
∈
ω
→
B
≠
∅
41
40
adantr
ω
ω
⊢
¬
A
∈
Fin
∧
∀
n
∈
ω
B
≠
∅
→
b
n
∈
B
→
n
∈
ω
→
B
≠
∅
42
rsp
ω
ω
⊢
∀
n
∈
ω
B
≠
∅
→
b
n
∈
B
→
n
∈
ω
→
B
≠
∅
→
b
n
∈
B
43
42
adantl
ω
ω
⊢
¬
A
∈
Fin
∧
∀
n
∈
ω
B
≠
∅
→
b
n
∈
B
→
n
∈
ω
→
B
≠
∅
→
b
n
∈
B
44
41
43
mpdd
ω
ω
⊢
¬
A
∈
Fin
∧
∀
n
∈
ω
B
≠
∅
→
b
n
∈
B
→
n
∈
ω
→
b
n
∈
B
45
16
44
ralrimi
ω
ω
⊢
¬
A
∈
Fin
∧
∀
n
∈
ω
B
≠
∅
→
b
n
∈
B
→
∀
n
∈
ω
b
n
∈
B
46
45
3adant2
ω
ω
ω
⊢
¬
A
∈
Fin
∧
b
Fn
ω
∧
∀
n
∈
ω
B
≠
∅
→
b
n
∈
B
→
∀
n
∈
ω
b
n
∈
B
47
46
3expib
ω
ω
ω
⊢
¬
A
∈
Fin
→
b
Fn
ω
∧
∀
n
∈
ω
B
≠
∅
→
b
n
∈
B
→
∀
n
∈
ω
b
n
∈
B
48
47
eximdv
ω
ω
ω
⊢
¬
A
∈
Fin
→
∃
b
b
Fn
ω
∧
∀
n
∈
ω
B
≠
∅
→
b
n
∈
B
→
∃
b
∀
n
∈
ω
b
n
∈
B
49
13
48
mpi
ω
⊢
¬
A
∈
Fin
→
∃
b
∀
n
∈
ω
b
n
∈
B
50
axcc2
ω
ω
⊢
∃
c
c
Fn
ω
∧
∀
n
∈
ω
C
n
≠
∅
→
c
n
∈
C
n
51
simp2
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
c
Fn
ω
∧
∀
n
∈
ω
C
n
≠
∅
→
c
n
∈
C
n
→
c
Fn
ω
52
nfra1
ω
⊢
Ⅎ
n
∀
n
∈
ω
b
n
∈
B
53
nfra1
ω
⊢
Ⅎ
n
∀
n
∈
ω
C
n
≠
∅
→
c
n
∈
C
n
54
52
53
nfan
ω
ω
⊢
Ⅎ
n
∀
n
∈
ω
b
n
∈
B
∧
∀
n
∈
ω
C
n
≠
∅
→
c
n
∈
C
n
55
fvex
⊢
b
n
∈
V
56
sseq1
⊢
y
=
b
n
→
y
⊆
A
↔
b
n
⊆
A
57
breq1
⊢
y
=
b
n
→
y
≈
𝒫
n
↔
b
n
≈
𝒫
n
58
56
57
anbi12d
⊢
y
=
b
n
→
y
⊆
A
∧
y
≈
𝒫
n
↔
b
n
⊆
A
∧
b
n
≈
𝒫
n
59
55
58
2
elab2
⊢
b
n
∈
B
↔
b
n
⊆
A
∧
b
n
≈
𝒫
n
60
59
simprbi
⊢
b
n
∈
B
→
b
n
≈
𝒫
n
61
60
ralimi
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
→
∀
n
∈
ω
b
n
≈
𝒫
n
62
fveq2
⊢
n
=
k
→
b
n
=
b
k
63
pweq
⊢
n
=
k
→
𝒫
n
=
𝒫
k
64
62
63
breq12d
⊢
n
=
k
→
b
n
≈
𝒫
n
↔
b
k
≈
𝒫
k
65
64
cbvralvw
ω
ω
⊢
∀
n
∈
ω
b
n
≈
𝒫
n
↔
∀
k
∈
ω
b
k
≈
𝒫
k
66
peano2
ω
ω
⊢
n
∈
ω
→
suc
n
∈
ω
67
omelon
ω
⊢
ω
∈
On
68
67
onelssi
ω
ω
⊢
suc
n
∈
ω
→
suc
n
⊆
ω
69
ssralv
ω
ω
⊢
suc
n
⊆
ω
→
∀
k
∈
ω
b
k
≈
𝒫
k
→
∀
k
∈
suc
n
b
k
≈
𝒫
k
70
66
68
69
3syl
ω
ω
⊢
n
∈
ω
→
∀
k
∈
ω
b
k
≈
𝒫
k
→
∀
k
∈
suc
n
b
k
≈
𝒫
k
71
pwsdompw
ω
⊢
n
∈
ω
∧
∀
k
∈
suc
n
b
k
≈
𝒫
k
→
⋃
k
∈
n
b
k
≺
b
n
72
71
ex
ω
⊢
n
∈
ω
→
∀
k
∈
suc
n
b
k
≈
𝒫
k
→
⋃
k
∈
n
b
k
≺
b
n
73
70
72
syld
ω
ω
⊢
n
∈
ω
→
∀
k
∈
ω
b
k
≈
𝒫
k
→
⋃
k
∈
n
b
k
≺
b
n
74
sdomdif
⊢
⋃
k
∈
n
b
k
≺
b
n
→
b
n
∖
⋃
k
∈
n
b
k
≠
∅
75
73
74
syl6
ω
ω
⊢
n
∈
ω
→
∀
k
∈
ω
b
k
≈
𝒫
k
→
b
n
∖
⋃
k
∈
n
b
k
≠
∅
76
65
75
biimtrid
ω
ω
⊢
n
∈
ω
→
∀
n
∈
ω
b
n
≈
𝒫
n
→
b
n
∖
⋃
k
∈
n
b
k
≠
∅
77
55
difexi
⊢
b
n
∖
⋃
k
∈
n
b
k
∈
V
78
3
fvmpt2
ω
⊢
n
∈
ω
∧
b
n
∖
⋃
k
∈
n
b
k
∈
V
→
C
n
=
b
n
∖
⋃
k
∈
n
b
k
79
77
78
mpan2
ω
⊢
n
∈
ω
→
C
n
=
b
n
∖
⋃
k
∈
n
b
k
80
79
neeq1d
ω
⊢
n
∈
ω
→
C
n
≠
∅
↔
b
n
∖
⋃
k
∈
n
b
k
≠
∅
81
76
80
sylibrd
ω
ω
⊢
n
∈
ω
→
∀
n
∈
ω
b
n
≈
𝒫
n
→
C
n
≠
∅
82
61
81
syl5com
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
→
n
∈
ω
→
C
n
≠
∅
83
82
adantr
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
∀
n
∈
ω
C
n
≠
∅
→
c
n
∈
C
n
→
n
∈
ω
→
C
n
≠
∅
84
rsp
ω
ω
⊢
∀
n
∈
ω
C
n
≠
∅
→
c
n
∈
C
n
→
n
∈
ω
→
C
n
≠
∅
→
c
n
∈
C
n
85
84
adantl
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
∀
n
∈
ω
C
n
≠
∅
→
c
n
∈
C
n
→
n
∈
ω
→
C
n
≠
∅
→
c
n
∈
C
n
86
83
85
mpdd
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
∀
n
∈
ω
C
n
≠
∅
→
c
n
∈
C
n
→
n
∈
ω
→
c
n
∈
C
n
87
54
86
ralrimi
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
∀
n
∈
ω
C
n
≠
∅
→
c
n
∈
C
n
→
∀
n
∈
ω
c
n
∈
C
n
88
87
3adant2
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
c
Fn
ω
∧
∀
n
∈
ω
C
n
≠
∅
→
c
n
∈
C
n
→
∀
n
∈
ω
c
n
∈
C
n
89
51
88
jca
ω
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
c
Fn
ω
∧
∀
n
∈
ω
C
n
≠
∅
→
c
n
∈
C
n
→
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
C
n
90
89
3expib
ω
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
→
c
Fn
ω
∧
∀
n
∈
ω
C
n
≠
∅
→
c
n
∈
C
n
→
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
C
n
91
90
eximdv
ω
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
→
∃
c
c
Fn
ω
∧
∀
n
∈
ω
C
n
≠
∅
→
c
n
∈
C
n
→
∃
c
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
C
n
92
50
91
mpi
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
→
∃
c
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
C
n
93
simp2
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
C
n
→
c
Fn
ω
94
nfra1
ω
⊢
Ⅎ
n
∀
n
∈
ω
c
n
∈
C
n
95
52
94
nfan
ω
ω
⊢
Ⅎ
n
∀
n
∈
ω
b
n
∈
B
∧
∀
n
∈
ω
c
n
∈
C
n
96
rsp
ω
ω
⊢
∀
n
∈
ω
c
n
∈
C
n
→
n
∈
ω
→
c
n
∈
C
n
97
96
com12
ω
ω
⊢
n
∈
ω
→
∀
n
∈
ω
c
n
∈
C
n
→
c
n
∈
C
n
98
rsp
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
→
n
∈
ω
→
b
n
∈
B
99
98
com12
ω
ω
⊢
n
∈
ω
→
∀
n
∈
ω
b
n
∈
B
→
b
n
∈
B
100
79
eleq2d
ω
⊢
n
∈
ω
→
c
n
∈
C
n
↔
c
n
∈
b
n
∖
⋃
k
∈
n
b
k
101
eldifi
⊢
c
n
∈
b
n
∖
⋃
k
∈
n
b
k
→
c
n
∈
b
n
102
100
101
syl6bi
ω
⊢
n
∈
ω
→
c
n
∈
C
n
→
c
n
∈
b
n
103
59
simplbi
⊢
b
n
∈
B
→
b
n
⊆
A
104
103
sseld
⊢
b
n
∈
B
→
c
n
∈
b
n
→
c
n
∈
A
105
102
104
syl9
ω
⊢
n
∈
ω
→
b
n
∈
B
→
c
n
∈
C
n
→
c
n
∈
A
106
99
105
syld
ω
ω
⊢
n
∈
ω
→
∀
n
∈
ω
b
n
∈
B
→
c
n
∈
C
n
→
c
n
∈
A
107
106
com23
ω
ω
⊢
n
∈
ω
→
c
n
∈
C
n
→
∀
n
∈
ω
b
n
∈
B
→
c
n
∈
A
108
97
107
syld
ω
ω
ω
⊢
n
∈
ω
→
∀
n
∈
ω
c
n
∈
C
n
→
∀
n
∈
ω
b
n
∈
B
→
c
n
∈
A
109
108
com13
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
→
∀
n
∈
ω
c
n
∈
C
n
→
n
∈
ω
→
c
n
∈
A
110
109
imp
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
∀
n
∈
ω
c
n
∈
C
n
→
n
∈
ω
→
c
n
∈
A
111
95
110
ralrimi
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
∀
n
∈
ω
c
n
∈
C
n
→
∀
n
∈
ω
c
n
∈
A
112
111
3adant2
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
C
n
→
∀
n
∈
ω
c
n
∈
A
113
ffnfv
ω
ω
ω
⊢
c
:
ω
⟶
A
↔
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
A
114
93
112
113
sylanbrc
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
C
n
→
c
:
ω
⟶
A
115
nfv
ω
⊢
Ⅎ
n
k
∈
ω
116
nnord
ω
⊢
k
∈
ω
→
Ord
k
117
nnord
ω
⊢
n
∈
ω
→
Ord
n
118
ordtri3or
⊢
Ord
k
∧
Ord
n
→
k
∈
n
∨
k
=
n
∨
n
∈
k
119
116
117
118
syl2an
ω
ω
⊢
k
∈
ω
∧
n
∈
ω
→
k
∈
n
∨
k
=
n
∨
n
∈
k
120
fveq2
⊢
n
=
k
→
c
n
=
c
k
121
fveq2
⊢
k
=
j
→
b
k
=
b
j
122
121
cbviunv
⊢
⋃
k
∈
n
b
k
=
⋃
j
∈
n
b
j
123
iuneq1
⊢
n
=
k
→
⋃
j
∈
n
b
j
=
⋃
j
∈
k
b
j
124
122
123
eqtrid
⊢
n
=
k
→
⋃
k
∈
n
b
k
=
⋃
j
∈
k
b
j
125
62
124
difeq12d
⊢
n
=
k
→
b
n
∖
⋃
k
∈
n
b
k
=
b
k
∖
⋃
j
∈
k
b
j
126
120
125
eleq12d
⊢
n
=
k
→
c
n
∈
b
n
∖
⋃
k
∈
n
b
k
↔
c
k
∈
b
k
∖
⋃
j
∈
k
b
j
127
126
rspccv
ω
ω
⊢
∀
n
∈
ω
c
n
∈
b
n
∖
⋃
k
∈
n
b
k
→
k
∈
ω
→
c
k
∈
b
k
∖
⋃
j
∈
k
b
j
128
96
100
mpbidi
ω
ω
⊢
∀
n
∈
ω
c
n
∈
C
n
→
n
∈
ω
→
c
n
∈
b
n
∖
⋃
k
∈
n
b
k
129
94
128
ralrimi
ω
ω
⊢
∀
n
∈
ω
c
n
∈
C
n
→
∀
n
∈
ω
c
n
∈
b
n
∖
⋃
k
∈
n
b
k
130
127
129
syl11
ω
ω
⊢
k
∈
ω
→
∀
n
∈
ω
c
n
∈
C
n
→
c
k
∈
b
k
∖
⋃
j
∈
k
b
j
131
130
3ad2ant1
ω
ω
ω
⊢
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
→
∀
n
∈
ω
c
n
∈
C
n
→
c
k
∈
b
k
∖
⋃
j
∈
k
b
j
132
eldifi
⊢
c
k
∈
b
k
∖
⋃
j
∈
k
b
j
→
c
k
∈
b
k
133
eleq1
⊢
c
k
=
c
n
→
c
k
∈
b
k
↔
c
n
∈
b
k
134
132
133
imbitrid
⊢
c
k
=
c
n
→
c
k
∈
b
k
∖
⋃
j
∈
k
b
j
→
c
n
∈
b
k
135
134
3ad2ant3
ω
ω
⊢
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
→
c
k
∈
b
k
∖
⋃
j
∈
k
b
j
→
c
n
∈
b
k
136
131
135
syld
ω
ω
ω
⊢
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
→
∀
n
∈
ω
c
n
∈
C
n
→
c
n
∈
b
k
137
136
imp
ω
ω
ω
⊢
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
∧
∀
n
∈
ω
c
n
∈
C
n
→
c
n
∈
b
k
138
ssiun2
⊢
k
∈
n
→
b
k
⊆
⋃
k
∈
n
b
k
139
138
sseld
⊢
k
∈
n
→
c
n
∈
b
k
→
c
n
∈
⋃
k
∈
n
b
k
140
137
139
syl5
ω
ω
ω
⊢
k
∈
n
→
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
∧
∀
n
∈
ω
c
n
∈
C
n
→
c
n
∈
⋃
k
∈
n
b
k
141
140
3impib
ω
ω
ω
⊢
k
∈
n
∧
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
∧
∀
n
∈
ω
c
n
∈
C
n
→
c
n
∈
⋃
k
∈
n
b
k
142
128
com12
ω
ω
⊢
n
∈
ω
→
∀
n
∈
ω
c
n
∈
C
n
→
c
n
∈
b
n
∖
⋃
k
∈
n
b
k
143
142
3ad2ant2
ω
ω
ω
⊢
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
→
∀
n
∈
ω
c
n
∈
C
n
→
c
n
∈
b
n
∖
⋃
k
∈
n
b
k
144
143
imp
ω
ω
ω
⊢
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
∧
∀
n
∈
ω
c
n
∈
C
n
→
c
n
∈
b
n
∖
⋃
k
∈
n
b
k
145
144
eldifbd
ω
ω
ω
⊢
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
∧
∀
n
∈
ω
c
n
∈
C
n
→
¬
c
n
∈
⋃
k
∈
n
b
k
146
145
3adant1
ω
ω
ω
⊢
k
∈
n
∧
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
∧
∀
n
∈
ω
c
n
∈
C
n
→
¬
c
n
∈
⋃
k
∈
n
b
k
147
141
146
pm2.21dd
ω
ω
ω
⊢
k
∈
n
∧
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
∧
∀
n
∈
ω
c
n
∈
C
n
→
k
=
n
148
147
3exp
ω
ω
ω
⊢
k
∈
n
→
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
→
∀
n
∈
ω
c
n
∈
C
n
→
k
=
n
149
2a1
ω
ω
ω
⊢
k
=
n
→
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
→
∀
n
∈
ω
c
n
∈
C
n
→
k
=
n
150
fveq2
⊢
j
=
n
→
b
j
=
b
n
151
150
ssiun2s
⊢
n
∈
k
→
b
n
⊆
⋃
j
∈
k
b
j
152
151
sseld
⊢
n
∈
k
→
c
n
∈
b
n
→
c
n
∈
⋃
j
∈
k
b
j
153
101
152
syl5
⊢
n
∈
k
→
c
n
∈
b
n
∖
⋃
k
∈
n
b
k
→
c
n
∈
⋃
j
∈
k
b
j
154
144
153
syl5
ω
ω
ω
⊢
n
∈
k
→
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
∧
∀
n
∈
ω
c
n
∈
C
n
→
c
n
∈
⋃
j
∈
k
b
j
155
154
3impib
ω
ω
ω
⊢
n
∈
k
∧
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
∧
∀
n
∈
ω
c
n
∈
C
n
→
c
n
∈
⋃
j
∈
k
b
j
156
eleq1
⊢
c
k
=
c
n
→
c
k
∈
b
k
∖
⋃
j
∈
k
b
j
↔
c
n
∈
b
k
∖
⋃
j
∈
k
b
j
157
eldifn
⊢
c
n
∈
b
k
∖
⋃
j
∈
k
b
j
→
¬
c
n
∈
⋃
j
∈
k
b
j
158
156
157
syl6bi
⊢
c
k
=
c
n
→
c
k
∈
b
k
∖
⋃
j
∈
k
b
j
→
¬
c
n
∈
⋃
j
∈
k
b
j
159
158
3ad2ant3
ω
ω
⊢
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
→
c
k
∈
b
k
∖
⋃
j
∈
k
b
j
→
¬
c
n
∈
⋃
j
∈
k
b
j
160
131
159
syld
ω
ω
ω
⊢
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
→
∀
n
∈
ω
c
n
∈
C
n
→
¬
c
n
∈
⋃
j
∈
k
b
j
161
160
a1i
ω
ω
ω
⊢
n
∈
k
→
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
→
∀
n
∈
ω
c
n
∈
C
n
→
¬
c
n
∈
⋃
j
∈
k
b
j
162
161
3imp
ω
ω
ω
⊢
n
∈
k
∧
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
∧
∀
n
∈
ω
c
n
∈
C
n
→
¬
c
n
∈
⋃
j
∈
k
b
j
163
155
162
pm2.21dd
ω
ω
ω
⊢
n
∈
k
∧
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
∧
∀
n
∈
ω
c
n
∈
C
n
→
k
=
n
164
163
3exp
ω
ω
ω
⊢
n
∈
k
→
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
→
∀
n
∈
ω
c
n
∈
C
n
→
k
=
n
165
148
149
164
3jaoi
ω
ω
ω
⊢
k
∈
n
∨
k
=
n
∨
n
∈
k
→
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
→
∀
n
∈
ω
c
n
∈
C
n
→
k
=
n
166
165
com12
ω
ω
ω
⊢
k
∈
ω
∧
n
∈
ω
∧
c
k
=
c
n
→
k
∈
n
∨
k
=
n
∨
n
∈
k
→
∀
n
∈
ω
c
n
∈
C
n
→
k
=
n
167
166
3expia
ω
ω
ω
⊢
k
∈
ω
∧
n
∈
ω
→
c
k
=
c
n
→
k
∈
n
∨
k
=
n
∨
n
∈
k
→
∀
n
∈
ω
c
n
∈
C
n
→
k
=
n
168
119
167
mpid
ω
ω
ω
⊢
k
∈
ω
∧
n
∈
ω
→
c
k
=
c
n
→
∀
n
∈
ω
c
n
∈
C
n
→
k
=
n
169
168
com3r
ω
ω
ω
⊢
∀
n
∈
ω
c
n
∈
C
n
→
k
∈
ω
∧
n
∈
ω
→
c
k
=
c
n
→
k
=
n
170
169
expd
ω
ω
ω
⊢
∀
n
∈
ω
c
n
∈
C
n
→
k
∈
ω
→
n
∈
ω
→
c
k
=
c
n
→
k
=
n
171
94
115
170
ralrimd
ω
ω
ω
⊢
∀
n
∈
ω
c
n
∈
C
n
→
k
∈
ω
→
∀
n
∈
ω
c
k
=
c
n
→
k
=
n
172
171
ralrimiv
ω
ω
ω
⊢
∀
n
∈
ω
c
n
∈
C
n
→
∀
k
∈
ω
∀
n
∈
ω
c
k
=
c
n
→
k
=
n
173
172
3ad2ant3
ω
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
C
n
→
∀
k
∈
ω
∀
n
∈
ω
c
k
=
c
n
→
k
=
n
174
dff13
ω
ω
ω
ω
⊢
c
:
ω
⟶
1-1
A
↔
c
:
ω
⟶
A
∧
∀
k
∈
ω
∀
n
∈
ω
c
k
=
c
n
→
k
=
n
175
114
173
174
sylanbrc
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
C
n
→
c
:
ω
⟶
1-1
A
176
175
19.8ad
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
C
n
→
∃
c
c
:
ω
⟶
1-1
A
177
1
brdom
ω
ω
⊢
ω
≼
A
↔
∃
c
c
:
ω
⟶
1-1
A
178
176
177
sylibr
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
∧
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
C
n
→
ω
≼
A
179
178
3expib
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
→
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
C
n
→
ω
≼
A
180
179
exlimdv
ω
ω
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
→
∃
c
c
Fn
ω
∧
∀
n
∈
ω
c
n
∈
C
n
→
ω
≼
A
181
92
180
mpd
ω
ω
⊢
∀
n
∈
ω
b
n
∈
B
→
ω
≼
A
182
181
exlimiv
ω
ω
⊢
∃
b
∀
n
∈
ω
b
n
∈
B
→
ω
≼
A
183
49
182
syl
ω
⊢
¬
A
∈
Fin
→
ω
≼
A