Metamath Proof Explorer


Theorem dvaddbr

Description: The sum rule for derivatives at a point. For the (simpler but more limited) function version, see dvadd . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses dvadd.f φF:X
dvadd.x φXS
dvadd.g φG:Y
dvadd.y φYS
dvaddbr.s φS
dvadd.k φKV
dvadd.l φLV
dvadd.bf φCFSK
dvadd.bg φCGSL
dvadd.j J=TopOpenfld
Assertion dvaddbr φCF+fGSK+L

Proof

Step Hyp Ref Expression
1 dvadd.f φF:X
2 dvadd.x φXS
3 dvadd.g φG:Y
4 dvadd.y φYS
5 dvaddbr.s φS
6 dvadd.k φKV
7 dvadd.l φLV
8 dvadd.bf φCFSK
9 dvadd.bg φCGSL
10 dvadd.j J=TopOpenfld
11 eqid J𝑡S=J𝑡S
12 eqid zXCFzFCzC=zXCFzFCzC
13 11 10 12 5 1 2 eldv φCFSKCintJ𝑡SXKzXCFzFCzClimC
14 8 13 mpbid φCintJ𝑡SXKzXCFzFCzClimC
15 14 simpld φCintJ𝑡SX
16 eqid zYCGzGCzC=zYCGzGCzC
17 11 10 16 5 3 4 eldv φCGSLCintJ𝑡SYLzYCGzGCzClimC
18 9 17 mpbid φCintJ𝑡SYLzYCGzGCzClimC
19 18 simpld φCintJ𝑡SY
20 15 19 elind φCintJ𝑡SXintJ𝑡SY
21 10 cnfldtopon JTopOn
22 resttopon JTopOnSJ𝑡STopOnS
23 21 5 22 sylancr φJ𝑡STopOnS
24 topontop J𝑡STopOnSJ𝑡STop
25 23 24 syl φJ𝑡STop
26 toponuni J𝑡STopOnSS=J𝑡S
27 23 26 syl φS=J𝑡S
28 2 27 sseqtrd φXJ𝑡S
29 4 27 sseqtrd φYJ𝑡S
30 eqid J𝑡S=J𝑡S
31 30 ntrin J𝑡STopXJ𝑡SYJ𝑡SintJ𝑡SXY=intJ𝑡SXintJ𝑡SY
32 25 28 29 31 syl3anc φintJ𝑡SXY=intJ𝑡SXintJ𝑡SY
33 20 32 eleqtrrd φCintJ𝑡SXY
34 inss1 XYX
35 ssdif XYXXYCXC
36 34 35 mp1i φXYCXC
37 36 sselda φzXYCzXC
38 2 5 sstrd φX
39 30 ntrss2 J𝑡STopXJ𝑡SintJ𝑡SXX
40 25 28 39 syl2anc φintJ𝑡SXX
41 40 15 sseldd φCX
42 1 38 41 dvlem φzXCFzFCzC
43 37 42 syldan φzXYCFzFCzC
44 inss2 XYY
45 ssdif XYYXYCYC
46 44 45 mp1i φXYCYC
47 46 sselda φzXYCzYC
48 4 5 sstrd φY
49 30 ntrss2 J𝑡STopYJ𝑡SintJ𝑡SYY
50 25 29 49 syl2anc φintJ𝑡SYY
51 50 19 sseldd φCY
52 3 48 51 dvlem φzYCGzGCzC
53 47 52 syldan φzXYCGzGCzC
54 ssidd φ
55 txtopon JTopOnJTopOnJ×tJTopOn×
56 21 21 55 mp2an J×tJTopOn×
57 56 toponrestid J×tJ=J×tJ𝑡×
58 14 simprd φKzXCFzFCzClimC
59 42 fmpttd φzXCFzFCzC:XC
60 38 ssdifssd φXC
61 eqid J𝑡XCC=J𝑡XCC
62 34 2 sstrid φXYS
63 62 27 sseqtrd φXYJ𝑡S
64 difssd φJ𝑡SXJ𝑡S
65 63 64 unssd φXYJ𝑡SXJ𝑡S
66 ssun1 XYXYJ𝑡SX
67 66 a1i φXYXYJ𝑡SX
68 30 ntrss J𝑡STopXYJ𝑡SXJ𝑡SXYXYJ𝑡SXintJ𝑡SXYintJ𝑡SXYJ𝑡SX
69 25 65 67 68 syl3anc φintJ𝑡SXYintJ𝑡SXYJ𝑡SX
70 69 33 sseldd φCintJ𝑡SXYJ𝑡SX
71 70 41 elind φCintJ𝑡SXYJ𝑡SXX
72 34 a1i φXYX
73 eqid J𝑡S𝑡X=J𝑡S𝑡X
74 30 73 restntr J𝑡STopXJ𝑡SXYXintJ𝑡S𝑡XXY=intJ𝑡SXYJ𝑡SXX
75 25 28 72 74 syl3anc φintJ𝑡S𝑡XXY=intJ𝑡SXYJ𝑡SXX
76 10 cnfldtop JTop
77 76 a1i φJTop
78 cnex V
79 ssexg SVSV
80 5 78 79 sylancl φSV
81 restabs JTopXSSVJ𝑡S𝑡X=J𝑡X
82 77 2 80 81 syl3anc φJ𝑡S𝑡X=J𝑡X
83 82 fveq2d φintJ𝑡S𝑡X=intJ𝑡X
84 83 fveq1d φintJ𝑡S𝑡XXY=intJ𝑡XXY
85 75 84 eqtr3d φintJ𝑡SXYJ𝑡SXX=intJ𝑡XXY
86 71 85 eleqtrd φCintJ𝑡XXY
87 undif1 XCC=XC
88 41 snssd φCX
89 ssequn2 CXXC=X
90 88 89 sylib φXC=X
91 87 90 eqtrid φXCC=X
92 91 oveq2d φJ𝑡XCC=J𝑡X
93 92 fveq2d φintJ𝑡XCC=intJ𝑡X
94 undif1 XYCC=XYC
95 41 51 elind φCXY
96 95 snssd φCXY
97 ssequn2 CXYXYC=XY
98 96 97 sylib φXYC=XY
99 94 98 eqtrid φXYCC=XY
100 93 99 fveq12d φintJ𝑡XCCXYCC=intJ𝑡XXY
101 86 100 eleqtrrd φCintJ𝑡XCCXYCC
102 59 36 60 10 61 101 limcres φzXCFzFCzCXYClimC=zXCFzFCzClimC
103 36 resmptd φzXCFzFCzCXYC=zXYCFzFCzC
104 103 oveq1d φzXCFzFCzCXYClimC=zXYCFzFCzClimC
105 102 104 eqtr3d φzXCFzFCzClimC=zXYCFzFCzClimC
106 58 105 eleqtrd φKzXYCFzFCzClimC
107 18 simprd φLzYCGzGCzClimC
108 52 fmpttd φzYCGzGCzC:YC
109 48 ssdifssd φYC
110 eqid J𝑡YCC=J𝑡YCC
111 difssd φJ𝑡SYJ𝑡S
112 63 111 unssd φXYJ𝑡SYJ𝑡S
113 ssun1 XYXYJ𝑡SY
114 113 a1i φXYXYJ𝑡SY
115 30 ntrss J𝑡STopXYJ𝑡SYJ𝑡SXYXYJ𝑡SYintJ𝑡SXYintJ𝑡SXYJ𝑡SY
116 25 112 114 115 syl3anc φintJ𝑡SXYintJ𝑡SXYJ𝑡SY
117 116 33 sseldd φCintJ𝑡SXYJ𝑡SY
118 117 51 elind φCintJ𝑡SXYJ𝑡SYY
119 44 a1i φXYY
120 eqid J𝑡S𝑡Y=J𝑡S𝑡Y
121 30 120 restntr J𝑡STopYJ𝑡SXYYintJ𝑡S𝑡YXY=intJ𝑡SXYJ𝑡SYY
122 25 29 119 121 syl3anc φintJ𝑡S𝑡YXY=intJ𝑡SXYJ𝑡SYY
123 restabs JTopYSSVJ𝑡S𝑡Y=J𝑡Y
124 77 4 80 123 syl3anc φJ𝑡S𝑡Y=J𝑡Y
125 124 fveq2d φintJ𝑡S𝑡Y=intJ𝑡Y
126 125 fveq1d φintJ𝑡S𝑡YXY=intJ𝑡YXY
127 122 126 eqtr3d φintJ𝑡SXYJ𝑡SYY=intJ𝑡YXY
128 118 127 eleqtrd φCintJ𝑡YXY
129 undif1 YCC=YC
130 51 snssd φCY
131 ssequn2 CYYC=Y
132 130 131 sylib φYC=Y
133 129 132 eqtrid φYCC=Y
134 133 oveq2d φJ𝑡YCC=J𝑡Y
135 134 fveq2d φintJ𝑡YCC=intJ𝑡Y
136 135 99 fveq12d φintJ𝑡YCCXYCC=intJ𝑡YXY
137 128 136 eleqtrrd φCintJ𝑡YCCXYCC
138 108 46 109 10 110 137 limcres φzYCGzGCzCXYClimC=zYCGzGCzClimC
139 46 resmptd φzYCGzGCzCXYC=zXYCGzGCzC
140 139 oveq1d φzYCGzGCzCXYClimC=zXYCGzGCzClimC
141 138 140 eqtr3d φzYCGzGCzClimC=zXYCGzGCzClimC
142 107 141 eleqtrd φLzXYCGzGCzClimC
143 10 addcn +J×tJCnJ
144 5 1 2 dvcl φCFSKK
145 8 144 mpdan φK
146 5 3 4 dvcl φCGSLL
147 9 146 mpdan φL
148 145 147 opelxpd φKL×
149 56 toponunii ×=J×tJ
150 149 cncnpi +J×tJCnJKL×+J×tJCnPJKL
151 143 148 150 sylancr φ+J×tJCnPJKL
152 43 53 54 54 10 57 106 142 151 limccnp2 φK+LzXYCFzFCzC+GzGCzClimC
153 eldifi zXYCzXY
154 153 adantl φzXYCzXY
155 1 ffnd φFFnX
156 155 adantr φzXYCFFnX
157 3 ffnd φGFnY
158 157 adantr φzXYCGFnY
159 ssexg XVXV
160 38 78 159 sylancl φXV
161 160 adantr φzXYCXV
162 ssexg YVYV
163 48 78 162 sylancl φYV
164 163 adantr φzXYCYV
165 eqid XY=XY
166 eqidd φzXYCzXFz=Fz
167 eqidd φzXYCzYGz=Gz
168 156 158 161 164 165 166 167 ofval φzXYCzXYF+fGz=Fz+Gz
169 154 168 mpdan φzXYCF+fGz=Fz+Gz
170 eqidd φzXYCCXFC=FC
171 eqidd φzXYCCYGC=GC
172 156 158 161 164 165 170 171 ofval φzXYCCXYF+fGC=FC+GC
173 95 172 mpidan φzXYCF+fGC=FC+GC
174 169 173 oveq12d φzXYCF+fGzF+fGC=Fz+Gz-FC+GC
175 difss XYCXY
176 175 34 sstri XYCX
177 176 sseli zXYCzX
178 ffvelcdm F:XzXFz
179 1 177 178 syl2an φzXYCFz
180 175 44 sstri XYCY
181 180 sseli zXYCzY
182 ffvelcdm G:YzYGz
183 3 181 182 syl2an φzXYCGz
184 1 41 ffvelcdmd φFC
185 184 adantr φzXYCFC
186 3 51 ffvelcdmd φGC
187 186 adantr φzXYCGC
188 179 183 185 187 addsub4d φzXYCFz+Gz-FC+GC=FzFC+Gz-GC
189 174 188 eqtrd φzXYCF+fGzF+fGC=FzFC+Gz-GC
190 189 oveq1d φzXYCF+fGzF+fGCzC=FzFC+Gz-GCzC
191 179 185 subcld φzXYCFzFC
192 183 187 subcld φzXYCGzGC
193 176 38 sstrid φXYC
194 193 sselda φzXYCz
195 38 41 sseldd φC
196 195 adantr φzXYCC
197 194 196 subcld φzXYCzC
198 eldifsni zXYCzC
199 198 adantl φzXYCzC
200 194 196 199 subne0d φzXYCzC0
201 191 192 197 200 divdird φzXYCFzFC+Gz-GCzC=FzFCzC+GzGCzC
202 190 201 eqtrd φzXYCF+fGzF+fGCzC=FzFCzC+GzGCzC
203 202 mpteq2dva φzXYCF+fGzF+fGCzC=zXYCFzFCzC+GzGCzC
204 203 oveq1d φzXYCF+fGzF+fGCzClimC=zXYCFzFCzC+GzGCzClimC
205 152 204 eleqtrrd φK+LzXYCF+fGzF+fGCzClimC
206 eqid zXYCF+fGzF+fGCzC=zXYCF+fGzF+fGCzC
207 addcl xyx+y
208 207 adantl φxyx+y
209 208 1 3 160 163 165 off φF+fG:XY
210 11 10 206 5 209 62 eldv φCF+fGSK+LCintJ𝑡SXYK+LzXYCF+fGzF+fGCzClimC
211 33 205 210 mpbir2and φCF+fGSK+L