Metamath Proof Explorer


Theorem dvfsumle

Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Hypotheses dvfsumle.m φNM
dvfsumle.a φxMNA:MNcn
dvfsumle.v φxMNBV
dvfsumle.b φdxMNAdx=xMNB
dvfsumle.c x=MA=C
dvfsumle.d x=NA=D
dvfsumle.x φkM..^NX
dvfsumle.l φkM..^Nxkk+1XB
Assertion dvfsumle φkM..^NXDC

Proof

Step Hyp Ref Expression
1 dvfsumle.m φNM
2 dvfsumle.a φxMNA:MNcn
3 dvfsumle.v φxMNBV
4 dvfsumle.b φdxMNAdx=xMNB
5 dvfsumle.c x=MA=C
6 dvfsumle.d x=NA=D
7 dvfsumle.x φkM..^NX
8 dvfsumle.l φkM..^Nxkk+1XB
9 fzofi M..^NFin
10 9 a1i φM..^NFin
11 eluzel2 NMM
12 1 11 syl φM
13 eluzelz NMN
14 1 13 syl φN
15 fzval2 MNMN=MN
16 12 14 15 syl2anc φMN=MN
17 inss1 MNMN
18 16 17 eqsstrdi φMNMN
19 18 sselda φyMNyMN
20 cncff xMNA:MNcnxMNA:MN
21 2 20 syl φxMNA:MN
22 eqid xMNA=xMNA
23 22 fmpt xMNAxMNA:MN
24 21 23 sylibr φxMNA
25 nfcsb1v _xy/xA
26 25 nfel1 xy/xA
27 csbeq1a x=yA=y/xA
28 27 eleq1d x=yAy/xA
29 26 28 rspc yMNxMNAy/xA
30 24 29 mpan9 φyMNy/xA
31 19 30 syldan φyMNy/xA
32 31 ralrimiva φyMNy/xA
33 fzofzp1 kM..^Nk+1MN
34 csbeq1 y=k+1y/xA=k+1/xA
35 34 eleq1d y=k+1y/xAk+1/xA
36 35 rspccva yMNy/xAk+1MNk+1/xA
37 32 33 36 syl2an φkM..^Nk+1/xA
38 elfzofz kM..^NkMN
39 csbeq1 y=ky/xA=k/xA
40 39 eleq1d y=ky/xAk/xA
41 40 rspccva yMNy/xAkMNk/xA
42 32 38 41 syl2an φkM..^Nk/xA
43 37 42 resubcld φkM..^Nk+1/xAk/xA
44 elfzoelz kM..^Nk
45 44 adantl φkM..^Nk
46 45 zred φkM..^Nk
47 46 recnd φkM..^Nk
48 ax-1cn 1
49 pncan2 k1k+1-k=1
50 47 48 49 sylancl φkM..^Nk+1-k=1
51 50 oveq2d φkM..^NXk+1-k=X1
52 7 recnd φkM..^NX
53 peano2re kk+1
54 46 53 syl φkM..^Nk+1
55 54 recnd φkM..^Nk+1
56 52 55 47 subdid φkM..^NXk+1-k=Xk+1Xk
57 52 mulridd φkM..^NX1=X
58 51 56 57 3eqtr3d φkM..^NXk+1Xk=X
59 eqid TopOpenfld=TopOpenfld
60 59 mulcn ×TopOpenfld×tTopOpenfldCnTopOpenfld
61 12 zred φM
62 61 adantr φkM..^NM
63 14 zred φN
64 63 adantr φkM..^NN
65 elfzole1 kM..^NMk
66 65 adantl φkM..^NMk
67 33 adantl φkM..^Nk+1MN
68 elfzle2 k+1MNk+1N
69 67 68 syl φkM..^Nk+1N
70 iccss MNMkk+1Nkk+1MN
71 62 64 66 69 70 syl22anc φkM..^Nkk+1MN
72 iccssre MNMN
73 61 63 72 syl2anc φMN
74 73 adantr φkM..^NMN
75 71 74 sstrd φkM..^Nkk+1
76 ax-resscn
77 75 76 sstrdi φkM..^Nkk+1
78 76 a1i φkM..^N
79 cncfmptc Xkk+1ykk+1X:kk+1cn
80 7 77 78 79 syl3anc φkM..^Nykk+1X:kk+1cn
81 cncfmptid kk+1ykk+1y:kk+1cn
82 75 76 81 sylancl φkM..^Nykk+1y:kk+1cn
83 remulcl XyXy
84 59 60 80 82 76 83 cncfmpt2ss φkM..^Nykk+1Xy:kk+1cn
85 reelprrecn
86 85 a1i φkM..^N
87 62 rexrd φkM..^NM*
88 iooss1 M*Mkkk+1Mk+1
89 87 66 88 syl2anc φkM..^Nkk+1Mk+1
90 64 rexrd φkM..^NN*
91 iooss2 N*k+1NMk+1MN
92 90 69 91 syl2anc φkM..^NMk+1MN
93 89 92 sstrd φkM..^Nkk+1MN
94 ioossicc MNMN
95 74 76 sstrdi φkM..^NMN
96 94 95 sstrid φkM..^NMN
97 93 96 sstrd φkM..^Nkk+1
98 97 sselda φkM..^Nykk+1y
99 1cnd φkM..^Nykk+11
100 78 sselda φkM..^Nyy
101 1cnd φkM..^Ny1
102 86 dvmptid φkM..^Ndyydy=y1
103 ioossre kk+1
104 103 a1i φkM..^Nkk+1
105 59 tgioo2 topGenran.=TopOpenfld𝑡
106 iooretop kk+1topGenran.
107 106 a1i φkM..^Nkk+1topGenran.
108 86 100 101 102 104 105 59 107 dvmptres φkM..^Ndykk+1ydy=ykk+11
109 86 98 99 108 52 dvmptcmul φkM..^Ndykk+1Xydy=ykk+1X1
110 57 mpteq2dv φkM..^Nykk+1X1=ykk+1X
111 109 110 eqtrd φkM..^Ndykk+1Xydy=ykk+1X
112 nfcv _yA
113 112 25 27 cbvmpt xkk+1A=ykk+1y/xA
114 71 resmptd φkM..^NxMNAkk+1=xkk+1A
115 2 adantr φkM..^NxMNA:MNcn
116 rescncf kk+1MNxMNA:MNcnxMNAkk+1:kk+1cn
117 71 115 116 sylc φkM..^NxMNAkk+1:kk+1cn
118 114 117 eqeltrrd φkM..^Nxkk+1A:kk+1cn
119 113 118 eqeltrrid φkM..^Nykk+1y/xA:kk+1cn
120 21 adantr φkM..^NxMNA:MN
121 120 23 sylibr φkM..^NxMNA
122 94 sseli yMNyMN
123 29 impcom xMNAyMNy/xA
124 121 122 123 syl2an φkM..^NyMNy/xA
125 124 recnd φkM..^NyMNy/xA
126 94 sseli xMNxMN
127 21 fvmptelcdm φxMNA
128 127 adantlr φkM..^NxMNA
129 126 128 sylan2 φkM..^NxMNA
130 129 fmpttd φkM..^NxMNA:MN
131 ioossre MN
132 dvfre xMNA:MNMNdxMNAdx:domdxMNAdx
133 130 131 132 sylancl φkM..^NdxMNAdx:domdxMNAdx
134 4 adantr φkM..^NdxMNAdx=xMNB
135 134 dmeqd φkM..^NdomdxMNAdx=domxMNB
136 3 adantlr φkM..^NxMNBV
137 136 ralrimiva φkM..^NxMNBV
138 dmmptg xMNBVdomxMNB=MN
139 137 138 syl φkM..^NdomxMNB=MN
140 135 139 eqtrd φkM..^NdomdxMNAdx=MN
141 134 140 feq12d φkM..^NdxMNAdx:domdxMNAdxxMNB:MN
142 133 141 mpbid φkM..^NxMNB:MN
143 eqid xMNB=xMNB
144 143 fmpt xMNBxMNB:MN
145 142 144 sylibr φkM..^NxMNB
146 nfcsb1v _xy/xB
147 146 nfel1 xy/xB
148 csbeq1a x=yB=y/xB
149 148 eleq1d x=yBy/xB
150 147 149 rspc yMNxMNBy/xB
151 145 150 mpan9 φkM..^NyMNy/xB
152 112 25 27 cbvmpt xMNA=yMNy/xA
153 152 oveq2i dxMNAdx=dyMNy/xAdy
154 nfcv _yB
155 154 146 148 cbvmpt xMNB=yMNy/xB
156 134 153 155 3eqtr3g φkM..^NdyMNy/xAdy=yMNy/xB
157 86 125 151 156 93 105 59 107 dvmptres φkM..^Ndykk+1y/xAdy=ykk+1y/xB
158 8 anassrs φkM..^Nxkk+1XB
159 158 ralrimiva φkM..^Nxkk+1XB
160 nfcv _xX
161 nfcv _x
162 160 161 146 nfbr xXy/xB
163 148 breq2d x=yXBXy/xB
164 162 163 rspc ykk+1xkk+1XBXy/xB
165 159 164 mpan9 φkM..^Nykk+1Xy/xB
166 46 rexrd φkM..^Nk*
167 54 rexrd φkM..^Nk+1*
168 46 lep1d φkM..^Nkk+1
169 lbicc2 k*k+1*kk+1kkk+1
170 166 167 168 169 syl3anc φkM..^Nkkk+1
171 ubicc2 k*k+1*kk+1k+1kk+1
172 166 167 168 171 syl3anc φkM..^Nk+1kk+1
173 oveq2 y=kXy=Xk
174 oveq2 y=k+1Xy=Xk+1
175 46 54 84 111 119 157 165 170 172 168 173 39 174 34 dvle φkM..^NXk+1Xkk+1/xAk/xA
176 58 175 eqbrtrrd φkM..^NXk+1/xAk/xA
177 10 7 43 176 fsumle φkM..^NXkM..^Nk+1/xAk/xA
178 vex yV
179 178 a1i y=MyV
180 eqeq2 y=Mx=yx=M
181 180 biimpa y=Mx=yx=M
182 181 5 syl y=Mx=yA=C
183 179 182 csbied y=My/xA=C
184 178 a1i y=NyV
185 eqeq2 y=Nx=yx=N
186 185 biimpa y=Nx=yx=N
187 186 6 syl y=Nx=yA=D
188 184 187 csbied y=Ny/xA=D
189 31 recnd φyMNy/xA
190 39 34 183 188 1 189 telfsumo2 φkM..^Nk+1/xAk/xA=DC
191 177 190 breqtrd φkM..^NXDC