Metamath Proof Explorer


Theorem dvmptfprodlem

Description: Induction step for dvmptfprod . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvmptfprodlem.xph xφ
dvmptfprodlem.iph iφ
dvmptfprodlem.jph jφ
dvmptfprodlem.if _iF
dvmptfprodlem.jg _jG
dvmptfprodlem.a φiIxXA
dvmptfprodlem.d φDFin
dvmptfprodlem.e φEV
dvmptfprodlem.db φ¬ED
dvmptfprodlem.ss φDEI
dvmptfprodlem.s φS
dvmptfprodlem.c φxXjDC
dvmptfprodlem.dvp φdxXiDAdSx=xXjDCiDjA
dvmptfprodlem.14 φxXG
dvmptfprodlem.dvf φdxXFdSx=xXG
dvmptfprodlem.f i=EA=F
dvmptfprodlem.cg j=EC=G
Assertion dvmptfprodlem φdxXiDEAdSx=xXjDECiDEjA

Proof

Step Hyp Ref Expression
1 dvmptfprodlem.xph xφ
2 dvmptfprodlem.iph iφ
3 dvmptfprodlem.jph jφ
4 dvmptfprodlem.if _iF
5 dvmptfprodlem.jg _jG
6 dvmptfprodlem.a φiIxXA
7 dvmptfprodlem.d φDFin
8 dvmptfprodlem.e φEV
9 dvmptfprodlem.db φ¬ED
10 dvmptfprodlem.ss φDEI
11 dvmptfprodlem.s φS
12 dvmptfprodlem.c φxXjDC
13 dvmptfprodlem.dvp φdxXiDAdSx=xXjDCiDjA
14 dvmptfprodlem.14 φxXG
15 dvmptfprodlem.dvf φdxXFdSx=xXG
16 dvmptfprodlem.f i=EA=F
17 dvmptfprodlem.cg j=EC=G
18 nfcv _ix
19 nfcv _iX
20 18 19 nfel ixX
21 2 20 nfan iφxX
22 4 a1i φxX_iF
23 snfi EFin
24 23 a1i φEFin
25 unfi DFinEFinDEFin
26 7 24 25 syl2anc φDEFin
27 26 adantr φxXDEFin
28 simpll φxXiDEφ
29 10 sselda φiDEiI
30 29 adantlr φxXiDEiI
31 simplr φxXiDExX
32 28 30 31 6 syl3anc φxXiDEA
33 snidg EVEE
34 8 33 syl φEE
35 elun2 EEEDE
36 34 35 syl φEDE
37 36 adantr φxXEDE
38 16 adantl φxXi=EA=F
39 21 22 27 32 37 38 fprodsplit1f φxXiDEA=FiDEEA
40 difundir DEE=DEEE
41 40 a1i φDEE=DEEE
42 difsn ¬EDDE=D
43 9 42 syl φDE=D
44 difid EE=
45 44 a1i φEE=
46 43 45 uneq12d φDEEE=D
47 un0 D=D
48 47 a1i φD=D
49 41 46 48 3eqtrd φDEE=D
50 49 prodeq1d φiDEEA=iDA
51 50 oveq2d φFiDEEA=FiDA
52 51 adantr φxXFiDEEA=FiDA
53 39 52 eqtrd φxXiDEA=FiDA
54 1 53 mpteq2da φxXiDEA=xXFiDA
55 54 oveq2d φdxXiDEAdSx=dxXFiDAdSx
56 10 36 sseldd φEI
57 56 adantr φxXEI
58 simpl φxXφ
59 simpr φxXxX
60 58 57 59 3jca φxXφEIxX
61 nfcv _iE
62 nfv iEI
63 2 62 20 nf3an iφEIxX
64 nfcv _i
65 4 64 nfel iF
66 63 65 nfim iφEIxXF
67 ancom φxXi=Ei=EφxX
68 67 imbi1i φxXi=EA=Fi=EφxXA=F
69 eqcom A=FF=A
70 69 imbi2i i=EφxXA=Fi=EφxXF=A
71 68 70 bitri φxXi=EA=Fi=EφxXF=A
72 38 71 mpbi i=EφxXF=A
73 72 3adantr2 i=EφEIxXF=A
74 73 3adant2 i=EφiIxXAφEIxXF=A
75 simp3 i=EφiIxXAφEIxXφEIxX
76 eleq1 i=EiIEI
77 76 3anbi2d i=EφiIxXφEIxX
78 77 imbi1d i=EφiIxXAφEIxXA
79 78 biimpa i=EφiIxXAφEIxXA
80 79 3adant3 i=EφiIxXAφEIxXφEIxXA
81 75 80 mpd i=EφiIxXAφEIxXA
82 74 81 eqeltrd i=EφiIxXAφEIxXF
83 82 3exp i=EφiIxXAφEIxXF
84 6 2a1i i=EφEIxXFφiIxXA
85 83 84 impbid i=EφiIxXAφEIxXF
86 61 66 85 6 vtoclgf EIφEIxXF
87 57 60 86 sylc φxXF
88 58 7 syl φxXDFin
89 58 adantr φxXiDφ
90 10 adantr φiDDEI
91 elun1 iDiDE
92 91 adantl φiDiDE
93 90 92 sseldd φiDiI
94 93 adantlr φxXiDiI
95 59 adantr φxXiDxX
96 89 94 95 6 syl3anc φxXiDA
97 21 88 96 fprodclf φxXiDA
98 nfv jxX
99 3 98 nfan jφxX
100 diffi DFinDjFin
101 7 100 syl φDjFin
102 101 adantr φxXDjFin
103 eldifi iDjiD
104 103 adantl φxXiDjiD
105 104 96 syldan φxXiDjA
106 21 102 105 fprodclf φxXiDjA
107 106 adantr φxXjDiDjA
108 12 107 mulcld φxXjDCiDjA
109 99 88 108 fsumclf φxXjDCiDjA
110 1 11 87 14 15 97 109 13 dvmptmulf φdxXFiDAdSx=xXGiDA+jDCiDjAF
111 nfcv _j×
112 nfcv _jiDEEA
113 5 111 112 nfov _jGiDEEA
114 58 8 syl φxXEV
115 58 9 syl φxX¬ED
116 diffi DEFinDEjFin
117 26 116 syl φDEjFin
118 117 adantr φxXDEjFin
119 eldifi iDEjiDE
120 119 adantl φxXiDEjiDE
121 120 32 syldan φxXiDEjA
122 21 118 121 fprodclf φxXiDEjA
123 122 adantr φxXjDiDEjA
124 12 123 mulcld φxXjDCiDEjA
125 sneq j=Ej=E
126 125 difeq2d j=EDEj=DEE
127 126 prodeq1d j=EiDEjA=iDEEA
128 17 127 oveq12d j=ECiDEjA=GiDEEA
129 49 7 eqeltrd φDEEFin
130 129 adantr φxXDEEFin
131 58 adantr φxXiDEEφ
132 10 adantr φiDEEDEI
133 eldifi iDEEiDE
134 133 adantl φiDEEiDE
135 132 134 sseldd φiDEEiI
136 135 adantlr φxXiDEEiI
137 59 adantr φxXiDEExX
138 131 136 137 6 syl3anc φxXiDEEA
139 21 130 138 fprodclf φxXiDEEA
140 14 139 mulcld φxXGiDEEA
141 99 113 88 114 115 124 128 140 fsumsplitsn φxXjDECiDEjA=jDCiDEjA+GiDEEA
142 difundir DEj=DjEj
143 142 a1i φjDDEj=DjEj
144 nfv xjD
145 1 144 nfan xφjD
146 elsni xEx=E
147 146 eqcomd xEE=x
148 147 adantr xEx=jE=x
149 simpr xEx=jx=j
150 eqidd xEx=jj=j
151 148 149 150 3eqtrd xEx=jE=j
152 151 adantll φjDxEx=jE=j
153 simpllr φjDxEx=jjD
154 152 153 eqeltrd φjDxEx=jED
155 9 ad3antrrr φjDxEx=j¬ED
156 154 155 pm2.65da φjDxE¬x=j
157 velsn xjx=j
158 156 157 sylnibr φjDxE¬xj
159 158 ex φjDxE¬xj
160 145 159 ralrimi φjDxE¬xj
161 disj Ej=xE¬xj
162 160 161 sylibr φjDEj=
163 disjdif2 Ej=Ej=E
164 162 163 syl φjDEj=E
165 164 uneq2d φjDDjEj=DjE
166 143 165 eqtrd φjDDEj=DjE
167 166 prodeq1d φjDiDEjA=iDjEA
168 167 adantlr φxXjDiDEjA=iDjEA
169 nfv ijD
170 21 169 nfan iφxXjD
171 102 adantr φxXjDDjFin
172 58 adantr φxXjDφ
173 172 8 syl φxXjDEV
174 id ¬ED¬ED
175 174 intnanrd ¬ED¬ED¬Ej
176 174 175 syl ¬ED¬ED¬Ej
177 eldif EDjED¬Ej
178 176 177 sylnibr ¬ED¬EDj
179 9 178 syl φ¬EDj
180 172 179 syl φxXjD¬EDj
181 105 adantlr φxXjDiDjA
182 87 adantr φxXjDF
183 170 4 171 173 180 181 16 182 fprodsplitsn φxXjDiDjEA=iDjAF
184 eqidd φxXjDiDjAF=iDjAF
185 168 183 184 3eqtrd φxXjDiDEjA=iDjAF
186 185 oveq2d φxXjDCiDEjA=CiDjAF
187 12 107 182 mulassd φxXjDCiDjAF=CiDjAF
188 187 eqcomd φxXjDCiDjAF=CiDjAF
189 186 188 eqtrd φxXjDCiDEjA=CiDjAF
190 189 ex φxXjDCiDEjA=CiDjAF
191 99 190 ralrimi φxXjDCiDEjA=CiDjAF
192 191 sumeq2d φxXjDCiDEjA=jDCiDjAF
193 99 88 87 108 fsummulc1f φxXjDCiDjAF=jDCiDjAF
194 193 eqcomd φxXjDCiDjAF=jDCiDjAF
195 eqidd φxXjDCiDjAF=jDCiDjAF
196 192 194 195 3eqtrd φxXjDCiDEjA=jDCiDjAF
197 109 87 mulcld φxXjDCiDjAF
198 196 197 eqeltrd φxXjDCiDEjA
199 198 140 addcomd φxXjDCiDEjA+GiDEEA=GiDEEA+jDCiDEjA
200 50 oveq2d φGiDEEA=GiDA
201 200 adantr φxXGiDEEA=GiDA
202 201 196 oveq12d φxXGiDEEA+jDCiDEjA=GiDA+jDCiDjAF
203 141 199 202 3eqtrrd φxXGiDA+jDCiDjAF=jDECiDEjA
204 1 203 mpteq2da φxXGiDA+jDCiDjAF=xXjDECiDEjA
205 55 110 204 3eqtrd φdxXiDEAdSx=xXjDECiDEjA