Metamath Proof Explorer


Theorem efgredlemd

Description: The reduced word that forms the base of the sequence in efgsval is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015) (Proof shortened by AV, 15-Oct-2022)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
efgredlem.1 φadomSbdomSSa<SASa=Sba0=b0
efgredlem.2 φAdomS
efgredlem.3 φBdomS
efgredlem.4 φSA=SB
efgredlem.5 φ¬A0=B0
efgredlemb.k K=A-1-1
efgredlemb.l L=B-1-1
efgredlemb.p φP0AK
efgredlemb.q φQ0BL
efgredlemb.u φUI×2𝑜
efgredlemb.v φVI×2𝑜
efgredlemb.6 φSA=PTAKU
efgredlemb.7 φSB=QTBLV
efgredlemb.8 φ¬AK=BL
efgredlemd.9 φPQ+2
efgredlemd.c φCdomS
efgredlemd.sc φSC=BLprefixQ++AKsubstrQ+2AK
Assertion efgredlemd φA0=B0

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 efgredlem.1 φadomSbdomSSa<SASa=Sba0=b0
8 efgredlem.2 φAdomS
9 efgredlem.3 φBdomS
10 efgredlem.4 φSA=SB
11 efgredlem.5 φ¬A0=B0
12 efgredlemb.k K=A-1-1
13 efgredlemb.l L=B-1-1
14 efgredlemb.p φP0AK
15 efgredlemb.q φQ0BL
16 efgredlemb.u φUI×2𝑜
17 efgredlemb.v φVI×2𝑜
18 efgredlemb.6 φSA=PTAKU
19 efgredlemb.7 φSB=QTBLV
20 efgredlemb.8 φ¬AK=BL
21 efgredlemd.9 φPQ+2
22 efgredlemd.c φCdomS
23 efgredlemd.sc φSC=BLprefixQ++AKsubstrQ+2AK
24 1 2 3 4 5 6 efgsdm CdomSCWordWC0Di1..^CCiranTCi1
25 24 simp1bi CdomSCWordW
26 22 25 syl φCWordW
27 26 eldifad φCWordW
28 1 2 3 4 5 6 efgsdm AdomSAWordWA0Di1..^AAiranTAi1
29 28 simp1bi AdomSAWordW
30 8 29 syl φAWordW
31 30 eldifad φAWordW
32 wrdf AWordWA:0..^AW
33 31 32 syl φA:0..^AW
34 fzossfz 0..^A10A1
35 lencl AWordWA0
36 31 35 syl φA0
37 36 nn0zd φA
38 fzoval A0..^A=0A1
39 37 38 syl φ0..^A=0A1
40 34 39 sseqtrrid φ0..^A10..^A
41 1 2 3 4 5 6 7 8 9 10 11 efgredlema φA1B1
42 41 simpld φA1
43 fzo0end A1A-1-10..^A1
44 42 43 syl φA-1-10..^A1
45 12 44 eqeltrid φK0..^A1
46 40 45 sseldd φK0..^A
47 33 46 ffvelcdmd φAKW
48 47 s1cld φ⟨“AK”⟩WordW
49 eldifsn CWordWCWordWC
50 lennncl CWordWCC
51 49 50 sylbi CWordWC
52 26 51 syl φC
53 lbfzo0 00..^CC
54 52 53 sylibr φ00..^C
55 ccatval1 CWordW⟨“AK”⟩WordW00..^CC++⟨“AK”⟩0=C0
56 27 48 54 55 syl3anc φC++⟨“AK”⟩0=C0
57 1 2 3 4 5 6 efgsdm BdomSBWordWB0Di1..^BBiranTBi1
58 57 simp1bi BdomSBWordW
59 9 58 syl φBWordW
60 59 eldifad φBWordW
61 wrdf BWordWB:0..^BW
62 60 61 syl φB:0..^BW
63 fzossfz 0..^B10B1
64 lencl BWordWB0
65 60 64 syl φB0
66 65 nn0zd φB
67 fzoval B0..^B=0B1
68 66 67 syl φ0..^B=0B1
69 63 68 sseqtrrid φ0..^B10..^B
70 41 simprd φB1
71 fzo0end B1B-1-10..^B1
72 70 71 syl φB-1-10..^B1
73 13 72 eqeltrid φL0..^B1
74 69 73 sseldd φL0..^B
75 62 74 ffvelcdmd φBLW
76 75 s1cld φ⟨“BL”⟩WordW
77 ccatval1 CWordW⟨“BL”⟩WordW00..^CC++⟨“BL”⟩0=C0
78 27 76 54 77 syl3anc φC++⟨“BL”⟩0=C0
79 56 78 eqtr4d φC++⟨“AK”⟩0=C++⟨“BL”⟩0
80 fviss IWordI×2𝑜WordI×2𝑜
81 1 80 eqsstri WWordI×2𝑜
82 81 47 sselid φAKWordI×2𝑜
83 lencl AKWordI×2𝑜AK0
84 82 83 syl φAK0
85 84 nn0red φAK
86 2rp 2+
87 ltaddrp AK2+AK<AK+2
88 85 86 87 sylancl φAK<AK+2
89 36 nn0red φA
90 89 lem1d φA1A
91 fznn AA11AA1A1A
92 37 91 syl φA11AA1A1A
93 42 90 92 mpbir2and φA11A
94 1 2 3 4 5 6 efgsres AdomSA11AA0..^A1domS
95 8 93 94 syl2anc φA0..^A1domS
96 1 2 3 4 5 6 efgsval A0..^A1domSSA0..^A1=A0..^A1A0..^A11
97 95 96 syl φSA0..^A1=A0..^A1A0..^A11
98 fz1ssfz0 1A0A
99 98 93 sselid φA10A
100 pfxres AWordWA10AAprefixA1=A0..^A1
101 31 99 100 syl2anc φAprefixA1=A0..^A1
102 101 fveq2d φAprefixA1=A0..^A1
103 pfxlen AWordWA10AAprefixA1=A1
104 31 99 103 syl2anc φAprefixA1=A1
105 102 104 eqtr3d φA0..^A1=A1
106 105 oveq1d φA0..^A11=A-1-1
107 106 12 eqtr4di φA0..^A11=K
108 107 fveq2d φA0..^A1A0..^A11=A0..^A1K
109 45 fvresd φA0..^A1K=AK
110 97 108 109 3eqtrd φSA0..^A1=AK
111 110 fveq2d φSA0..^A1=AK
112 1 2 3 4 5 6 efgsdmi AdomSA1SAranTAA-1-1
113 8 42 112 syl2anc φSAranTAA-1-1
114 12 fveq2i AK=AA-1-1
115 114 fveq2i TAK=TAA-1-1
116 115 rneqi ranTAK=ranTAA-1-1
117 113 116 eleqtrrdi φSAranTAK
118 1 2 3 4 efgtlen AKWSAranTAKSA=AK+2
119 47 117 118 syl2anc φSA=AK+2
120 88 111 119 3brtr4d φSA0..^A1<SA
121 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 efgredleme φAKranTSCBLranTSC
122 121 simpld φAKranTSC
123 1 2 3 4 5 6 efgsp1 CdomSAKranTSCC++⟨“AK”⟩domS
124 22 122 123 syl2anc φC++⟨“AK”⟩domS
125 1 2 3 4 5 6 efgsval2 CWordWAKWC++⟨“AK”⟩domSSC++⟨“AK”⟩=AK
126 27 47 124 125 syl3anc φSC++⟨“AK”⟩=AK
127 110 126 eqtr4d φSA0..^A1=SC++⟨“AK”⟩
128 2fveq3 a=A0..^A1Sa=SA0..^A1
129 128 breq1d a=A0..^A1Sa<SASA0..^A1<SA
130 fveqeq2 a=A0..^A1Sa=SbSA0..^A1=Sb
131 fveq1 a=A0..^A1a0=A0..^A10
132 131 eqeq1d a=A0..^A1a0=b0A0..^A10=b0
133 130 132 imbi12d a=A0..^A1Sa=Sba0=b0SA0..^A1=SbA0..^A10=b0
134 129 133 imbi12d a=A0..^A1Sa<SASa=Sba0=b0SA0..^A1<SASA0..^A1=SbA0..^A10=b0
135 fveq2 b=C++⟨“AK”⟩Sb=SC++⟨“AK”⟩
136 135 eqeq2d b=C++⟨“AK”⟩SA0..^A1=SbSA0..^A1=SC++⟨“AK”⟩
137 fveq1 b=C++⟨“AK”⟩b0=C++⟨“AK”⟩0
138 137 eqeq2d b=C++⟨“AK”⟩A0..^A10=b0A0..^A10=C++⟨“AK”⟩0
139 136 138 imbi12d b=C++⟨“AK”⟩SA0..^A1=SbA0..^A10=b0SA0..^A1=SC++⟨“AK”⟩A0..^A10=C++⟨“AK”⟩0
140 139 imbi2d b=C++⟨“AK”⟩SA0..^A1<SASA0..^A1=SbA0..^A10=b0SA0..^A1<SASA0..^A1=SC++⟨“AK”⟩A0..^A10=C++⟨“AK”⟩0
141 134 140 rspc2va A0..^A1domSC++⟨“AK”⟩domSadomSbdomSSa<SASa=Sba0=b0SA0..^A1<SASA0..^A1=SC++⟨“AK”⟩A0..^A10=C++⟨“AK”⟩0
142 95 124 7 141 syl21anc φSA0..^A1<SASA0..^A1=SC++⟨“AK”⟩A0..^A10=C++⟨“AK”⟩0
143 120 127 142 mp2d φA0..^A10=C++⟨“AK”⟩0
144 81 75 sselid φBLWordI×2𝑜
145 lencl BLWordI×2𝑜BL0
146 144 145 syl φBL0
147 146 nn0red φBL
148 ltaddrp BL2+BL<BL+2
149 147 86 148 sylancl φBL<BL+2
150 65 nn0red φB
151 150 lem1d φB1B
152 fznn BB11BB1B1B
153 66 152 syl φB11BB1B1B
154 70 151 153 mpbir2and φB11B
155 1 2 3 4 5 6 efgsres BdomSB11BB0..^B1domS
156 9 154 155 syl2anc φB0..^B1domS
157 1 2 3 4 5 6 efgsval B0..^B1domSSB0..^B1=B0..^B1B0..^B11
158 156 157 syl φSB0..^B1=B0..^B1B0..^B11
159 fz1ssfz0 1B0B
160 159 154 sselid φB10B
161 pfxres BWordWB10BBprefixB1=B0..^B1
162 60 160 161 syl2anc φBprefixB1=B0..^B1
163 162 fveq2d φBprefixB1=B0..^B1
164 pfxlen BWordWB10BBprefixB1=B1
165 60 160 164 syl2anc φBprefixB1=B1
166 163 165 eqtr3d φB0..^B1=B1
167 166 oveq1d φB0..^B11=B-1-1
168 167 13 eqtr4di φB0..^B11=L
169 168 fveq2d φB0..^B1B0..^B11=B0..^B1L
170 73 fvresd φB0..^B1L=BL
171 158 169 170 3eqtrd φSB0..^B1=BL
172 171 fveq2d φSB0..^B1=BL
173 1 2 3 4 5 6 efgsdmi BdomSB1SBranTBB-1-1
174 9 70 173 syl2anc φSBranTBB-1-1
175 10 174 eqeltrd φSAranTBB-1-1
176 13 fveq2i BL=BB-1-1
177 176 fveq2i TBL=TBB-1-1
178 177 rneqi ranTBL=ranTBB-1-1
179 175 178 eleqtrrdi φSAranTBL
180 1 2 3 4 efgtlen BLWSAranTBLSA=BL+2
181 75 179 180 syl2anc φSA=BL+2
182 149 172 181 3brtr4d φSB0..^B1<SA
183 121 simprd φBLranTSC
184 1 2 3 4 5 6 efgsp1 CdomSBLranTSCC++⟨“BL”⟩domS
185 22 183 184 syl2anc φC++⟨“BL”⟩domS
186 1 2 3 4 5 6 efgsval2 CWordWBLWC++⟨“BL”⟩domSSC++⟨“BL”⟩=BL
187 27 75 185 186 syl3anc φSC++⟨“BL”⟩=BL
188 171 187 eqtr4d φSB0..^B1=SC++⟨“BL”⟩
189 2fveq3 a=B0..^B1Sa=SB0..^B1
190 189 breq1d a=B0..^B1Sa<SASB0..^B1<SA
191 fveqeq2 a=B0..^B1Sa=SbSB0..^B1=Sb
192 fveq1 a=B0..^B1a0=B0..^B10
193 192 eqeq1d a=B0..^B1a0=b0B0..^B10=b0
194 191 193 imbi12d a=B0..^B1Sa=Sba0=b0SB0..^B1=SbB0..^B10=b0
195 190 194 imbi12d a=B0..^B1Sa<SASa=Sba0=b0SB0..^B1<SASB0..^B1=SbB0..^B10=b0
196 fveq2 b=C++⟨“BL”⟩Sb=SC++⟨“BL”⟩
197 196 eqeq2d b=C++⟨“BL”⟩SB0..^B1=SbSB0..^B1=SC++⟨“BL”⟩
198 fveq1 b=C++⟨“BL”⟩b0=C++⟨“BL”⟩0
199 198 eqeq2d b=C++⟨“BL”⟩B0..^B10=b0B0..^B10=C++⟨“BL”⟩0
200 197 199 imbi12d b=C++⟨“BL”⟩SB0..^B1=SbB0..^B10=b0SB0..^B1=SC++⟨“BL”⟩B0..^B10=C++⟨“BL”⟩0
201 200 imbi2d b=C++⟨“BL”⟩SB0..^B1<SASB0..^B1=SbB0..^B10=b0SB0..^B1<SASB0..^B1=SC++⟨“BL”⟩B0..^B10=C++⟨“BL”⟩0
202 195 201 rspc2va B0..^B1domSC++⟨“BL”⟩domSadomSbdomSSa<SASa=Sba0=b0SB0..^B1<SASB0..^B1=SC++⟨“BL”⟩B0..^B10=C++⟨“BL”⟩0
203 156 185 7 202 syl21anc φSB0..^B1<SASB0..^B1=SC++⟨“BL”⟩B0..^B10=C++⟨“BL”⟩0
204 182 188 203 mp2d φB0..^B10=C++⟨“BL”⟩0
205 79 143 204 3eqtr4d φA0..^A10=B0..^B10
206 lbfzo0 00..^A1A1
207 42 206 sylibr φ00..^A1
208 207 fvresd φA0..^A10=A0
209 lbfzo0 00..^B1B1
210 70 209 sylibr φ00..^B1
211 210 fvresd φB0..^B10=B0
212 205 208 211 3eqtr3d φA0=B0