Metamath Proof Explorer


Theorem eftlub

Description: An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008) (Proof shortened by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypotheses eftl.1 F = n 0 A n n !
eftl.2 G = n 0 A n n !
eftl.3 H = n 0 A M M ! 1 M + 1 n
eftl.4 φ M
eftl.5 φ A
eftl.6 φ A 1
Assertion eftlub φ k M F k A M M + 1 M ! M

Proof

Step Hyp Ref Expression
1 eftl.1 F = n 0 A n n !
2 eftl.2 G = n 0 A n n !
3 eftl.3 H = n 0 A M M ! 1 M + 1 n
4 eftl.4 φ M
5 eftl.5 φ A
6 eftl.6 φ A 1
7 4 nnnn0d φ M 0
8 1 eftlcl A M 0 k M F k
9 5 7 8 syl2anc φ k M F k
10 9 abscld φ k M F k
11 5 abscld φ A
12 2 reeftlcl A M 0 k M G k
13 11 7 12 syl2anc φ k M G k
14 11 7 reexpcld φ A M
15 peano2nn0 M 0 M + 1 0
16 7 15 syl φ M + 1 0
17 16 nn0red φ M + 1
18 7 faccld φ M !
19 18 4 nnmulcld φ M ! M
20 17 19 nndivred φ M + 1 M ! M
21 14 20 remulcld φ A M M + 1 M ! M
22 eqid M = M
23 4 nnzd φ M
24 eqidd φ k M F k = F k
25 eluznn0 M 0 k M k 0
26 7 25 sylan φ k M k 0
27 1 eftval k 0 F k = A k k !
28 27 adantl φ k 0 F k = A k k !
29 eftcl A k 0 A k k !
30 5 29 sylan φ k 0 A k k !
31 28 30 eqeltrd φ k 0 F k
32 26 31 syldan φ k M F k
33 1 eftlcvg A M 0 seq M + F dom
34 5 7 33 syl2anc φ seq M + F dom
35 22 23 24 32 34 isumclim2 φ seq M + F k M F k
36 eqidd φ k M G k = G k
37 2 eftval k 0 G k = A k k !
38 37 adantl φ k 0 G k = A k k !
39 reeftcl A k 0 A k k !
40 11 39 sylan φ k 0 A k k !
41 38 40 eqeltrd φ k 0 G k
42 26 41 syldan φ k M G k
43 42 recnd φ k M G k
44 11 recnd φ A
45 2 eftlcvg A M 0 seq M + G dom
46 44 7 45 syl2anc φ seq M + G dom
47 22 23 36 43 46 isumclim2 φ seq M + G k M G k
48 eftabs A k 0 A k k ! = A k k !
49 5 48 sylan φ k 0 A k k ! = A k k !
50 28 fveq2d φ k 0 F k = A k k !
51 49 50 38 3eqtr4rd φ k 0 G k = F k
52 26 51 syldan φ k M G k = F k
53 22 35 47 23 32 52 iserabs φ k M F k k M G k
54 nn0uz 0 = 0
55 0zd φ 0
56 4 nncnd φ M
57 nn0cn j 0 j
58 nn0ex 0 V
59 58 mptex n 0 A n n ! V
60 2 59 eqeltri G V
61 60 shftval4 M j G shift -M j = G M + j
62 56 57 61 syl2an φ j 0 G shift -M j = G M + j
63 nn0addcl M 0 j 0 M + j 0
64 7 63 sylan φ j 0 M + j 0
65 2 eftval M + j 0 G M + j = A M + j M + j !
66 64 65 syl φ j 0 G M + j = A M + j M + j !
67 11 adantr φ j 0 A
68 reeftcl A M + j 0 A M + j M + j !
69 67 64 68 syl2anc φ j 0 A M + j M + j !
70 66 69 eqeltrd φ j 0 G M + j
71 oveq2 n = j 1 M + 1 n = 1 M + 1 j
72 71 oveq2d n = j A M M ! 1 M + 1 n = A M M ! 1 M + 1 j
73 ovex A M M ! 1 M + 1 j V
74 72 3 73 fvmpt j 0 H j = A M M ! 1 M + 1 j
75 74 adantl φ j 0 H j = A M M ! 1 M + 1 j
76 14 18 nndivred φ A M M !
77 76 adantr φ j 0 A M M !
78 4 peano2nnd φ M + 1
79 78 nnrecred φ 1 M + 1
80 reexpcl 1 M + 1 j 0 1 M + 1 j
81 79 80 sylan φ j 0 1 M + 1 j
82 77 81 remulcld φ j 0 A M M ! 1 M + 1 j
83 67 64 reexpcld φ j 0 A M + j
84 14 adantr φ j 0 A M
85 64 faccld φ j 0 M + j !
86 85 nnred φ j 0 M + j !
87 86 82 remulcld φ j 0 M + j ! A M M ! 1 M + 1 j
88 7 adantr φ j 0 M 0
89 uzid M M M
90 23 89 syl φ M M
91 uzaddcl M M j 0 M + j M
92 90 91 sylan φ j 0 M + j M
93 5 absge0d φ 0 A
94 93 adantr φ j 0 0 A
95 6 adantr φ j 0 A 1
96 67 88 92 94 95 leexp2rd φ j 0 A M + j A M
97 18 adantr φ j 0 M !
98 nnexpcl M + 1 j 0 M + 1 j
99 78 98 sylan φ j 0 M + 1 j
100 97 99 nnmulcld φ j 0 M ! M + 1 j
101 100 nnred φ j 0 M ! M + 1 j
102 11 7 93 expge0d φ 0 A M
103 14 102 jca φ A M 0 A M
104 103 adantr φ j 0 A M 0 A M
105 faclbnd6 M 0 j 0 M ! M + 1 j M + j !
106 7 105 sylan φ j 0 M ! M + 1 j M + j !
107 lemul1a M ! M + 1 j M + j ! A M 0 A M M ! M + 1 j M + j ! M ! M + 1 j A M M + j ! A M
108 101 86 104 106 107 syl31anc φ j 0 M ! M + 1 j A M M + j ! A M
109 86 84 remulcld φ j 0 M + j ! A M
110 100 nnrpd φ j 0 M ! M + 1 j +
111 84 109 110 lemuldiv2d φ j 0 M ! M + 1 j A M M + j ! A M A M M + j ! A M M ! M + 1 j
112 108 111 mpbid φ j 0 A M M + j ! A M M ! M + 1 j
113 85 nncnd φ j 0 M + j !
114 14 recnd φ A M
115 114 adantr φ j 0 A M
116 100 nncnd φ j 0 M ! M + 1 j
117 100 nnne0d φ j 0 M ! M + 1 j 0
118 113 115 116 117 divassd φ j 0 M + j ! A M M ! M + 1 j = M + j ! A M M ! M + 1 j
119 78 nncnd φ M + 1
120 119 adantr φ j 0 M + 1
121 78 adantr φ j 0 M + 1
122 121 nnne0d φ j 0 M + 1 0
123 nn0z j 0 j
124 123 adantl φ j 0 j
125 120 122 124 exprecd φ j 0 1 M + 1 j = 1 M + 1 j
126 125 oveq2d φ j 0 A M M ! 1 M + 1 j = A M M ! 1 M + 1 j
127 76 recnd φ A M M !
128 127 adantr φ j 0 A M M !
129 99 nncnd φ j 0 M + 1 j
130 99 nnne0d φ j 0 M + 1 j 0
131 128 129 130 divrecd φ j 0 A M M ! M + 1 j = A M M ! 1 M + 1 j
132 18 nncnd φ M !
133 132 adantr φ j 0 M !
134 facne0 M 0 M ! 0
135 7 134 syl φ M ! 0
136 135 adantr φ j 0 M ! 0
137 115 133 129 136 130 divdiv1d φ j 0 A M M ! M + 1 j = A M M ! M + 1 j
138 126 131 137 3eqtr2rd φ j 0 A M M ! M + 1 j = A M M ! 1 M + 1 j
139 138 oveq2d φ j 0 M + j ! A M M ! M + 1 j = M + j ! A M M ! 1 M + 1 j
140 118 139 eqtrd φ j 0 M + j ! A M M ! M + 1 j = M + j ! A M M ! 1 M + 1 j
141 112 140 breqtrd φ j 0 A M M + j ! A M M ! 1 M + 1 j
142 83 84 87 96 141 letrd φ j 0 A M + j M + j ! A M M ! 1 M + 1 j
143 85 nngt0d φ j 0 0 < M + j !
144 ledivmul A M + j A M M ! 1 M + 1 j M + j ! 0 < M + j ! A M + j M + j ! A M M ! 1 M + 1 j A M + j M + j ! A M M ! 1 M + 1 j
145 83 82 86 143 144 syl112anc φ j 0 A M + j M + j ! A M M ! 1 M + 1 j A M + j M + j ! A M M ! 1 M + 1 j
146 142 145 mpbird φ j 0 A M + j M + j ! A M M ! 1 M + 1 j
147 66 146 eqbrtrd φ j 0 G M + j A M M ! 1 M + 1 j
148 0z 0
149 23 znegcld φ M
150 60 seqshft 0 M seq 0 + G shift -M = seq 0 -M + G shift -M
151 148 149 150 sylancr φ seq 0 + G shift -M = seq 0 -M + G shift -M
152 0cn 0
153 subneg 0 M 0 -M = 0 + M
154 152 153 mpan M 0 -M = 0 + M
155 addid2 M 0 + M = M
156 154 155 eqtrd M 0 -M = M
157 56 156 syl φ 0 -M = M
158 157 seqeq1d φ seq 0 -M + G = seq M + G
159 158 47 eqbrtrd φ seq 0 -M + G k M G k
160 seqex seq 0 -M + G V
161 climshft M seq 0 -M + G V seq 0 -M + G shift -M k M G k seq 0 -M + G k M G k
162 149 160 161 sylancl φ seq 0 -M + G shift -M k M G k seq 0 -M + G k M G k
163 159 162 mpbird φ seq 0 -M + G shift -M k M G k
164 ovex seq 0 -M + G shift -M V
165 sumex k M G k V
166 164 165 breldm seq 0 -M + G shift -M k M G k seq 0 -M + G shift -M dom
167 163 166 syl φ seq 0 -M + G shift -M dom
168 151 167 eqeltrd φ seq 0 + G shift -M dom
169 4 nnge1d φ 1 M
170 1nn 1
171 nnleltp1 1 M 1 M 1 < M + 1
172 170 4 171 sylancr φ 1 M 1 < M + 1
173 169 172 mpbid φ 1 < M + 1
174 16 nn0ge0d φ 0 M + 1
175 17 174 absidd φ M + 1 = M + 1
176 173 175 breqtrrd φ 1 < M + 1
177 eqid n 0 1 M + 1 n = n 0 1 M + 1 n
178 ovex 1 M + 1 j V
179 71 177 178 fvmpt j 0 n 0 1 M + 1 n j = 1 M + 1 j
180 179 adantl φ j 0 n 0 1 M + 1 n j = 1 M + 1 j
181 119 176 180 georeclim φ seq 0 + n 0 1 M + 1 n M + 1 M + 1 - 1
182 81 recnd φ j 0 1 M + 1 j
183 180 182 eqeltrd φ j 0 n 0 1 M + 1 n j
184 180 oveq2d φ j 0 A M M ! n 0 1 M + 1 n j = A M M ! 1 M + 1 j
185 75 184 eqtr4d φ j 0 H j = A M M ! n 0 1 M + 1 n j
186 54 55 127 181 183 185 isermulc2 φ seq 0 + H A M M ! M + 1 M + 1 - 1
187 ax-1cn 1
188 pncan M 1 M + 1 - 1 = M
189 56 187 188 sylancl φ M + 1 - 1 = M
190 189 oveq2d φ M + 1 M + 1 - 1 = M + 1 M
191 190 oveq2d φ A M M ! M + 1 M + 1 - 1 = A M M ! M + 1 M
192 17 4 nndivred φ M + 1 M
193 192 recnd φ M + 1 M
194 114 193 132 135 div23d φ A M M + 1 M M ! = A M M ! M + 1 M
195 191 194 eqtr4d φ A M M ! M + 1 M + 1 - 1 = A M M + 1 M M !
196 114 193 132 135 divassd φ A M M + 1 M M ! = A M M + 1 M M !
197 4 nnne0d φ M 0
198 119 56 132 197 135 divdiv1d φ M + 1 M M ! = M + 1 M M !
199 56 132 mulcomd φ M M ! = M ! M
200 199 oveq2d φ M + 1 M M ! = M + 1 M ! M
201 198 200 eqtrd φ M + 1 M M ! = M + 1 M ! M
202 201 oveq2d φ A M M + 1 M M ! = A M M + 1 M ! M
203 195 196 202 3eqtrd φ A M M ! M + 1 M + 1 - 1 = A M M + 1 M ! M
204 186 203 breqtrd φ seq 0 + H A M M + 1 M ! M
205 seqex seq 0 + H V
206 ovex A M M + 1 M ! M V
207 205 206 breldm seq 0 + H A M M + 1 M ! M seq 0 + H dom
208 204 207 syl φ seq 0 + H dom
209 54 55 62 70 75 82 147 168 208 isumle φ j 0 G M + j j 0 A M M ! 1 M + 1 j
210 eqid 0 + M = 0 + M
211 fveq2 k = M + j G k = G M + j
212 56 addid2d φ 0 + M = M
213 212 fveq2d φ 0 + M = M
214 213 eleq2d φ k 0 + M k M
215 214 biimpa φ k 0 + M k M
216 215 43 syldan φ k 0 + M G k
217 54 210 211 23 55 216 isumshft φ k 0 + M G k = j 0 G M + j
218 213 sumeq1d φ k 0 + M G k = k M G k
219 217 218 eqtr3d φ j 0 G M + j = k M G k
220 82 recnd φ j 0 A M M ! 1 M + 1 j
221 54 55 75 220 204 isumclim φ j 0 A M M ! 1 M + 1 j = A M M + 1 M ! M
222 209 219 221 3brtr3d φ k M G k A M M + 1 M ! M
223 10 13 21 53 222 letrd φ k M F k A M M + 1 M ! M