Metamath Proof Explorer


Theorem eftlub

Description: An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008) (Proof shortened by Mario Carneiro, 29-Apr-2014)

Ref Expression
Hypotheses eftl.1 F=n0Ann!
eftl.2 G=n0Ann!
eftl.3 H=n0AMM!1M+1n
eftl.4 φM
eftl.5 φA
eftl.6 φA1
Assertion eftlub φkMFkAMM+1M! M

Proof

Step Hyp Ref Expression
1 eftl.1 F=n0Ann!
2 eftl.2 G=n0Ann!
3 eftl.3 H=n0AMM!1M+1n
4 eftl.4 φM
5 eftl.5 φA
6 eftl.6 φA1
7 4 nnnn0d φM0
8 1 eftlcl AM0kMFk
9 5 7 8 syl2anc φkMFk
10 9 abscld φkMFk
11 5 abscld φA
12 2 reeftlcl AM0kMGk
13 11 7 12 syl2anc φkMGk
14 11 7 reexpcld φAM
15 peano2nn0 M0M+10
16 7 15 syl φM+10
17 16 nn0red φM+1
18 7 faccld φM!
19 18 4 nnmulcld φM! M
20 17 19 nndivred φM+1M! M
21 14 20 remulcld φAMM+1M! M
22 eqid M=M
23 4 nnzd φM
24 eqidd φkMFk=Fk
25 eluznn0 M0kMk0
26 7 25 sylan φkMk0
27 1 eftval k0Fk=Akk!
28 27 adantl φk0Fk=Akk!
29 eftcl Ak0Akk!
30 5 29 sylan φk0Akk!
31 28 30 eqeltrd φk0Fk
32 26 31 syldan φkMFk
33 1 eftlcvg AM0seqM+Fdom
34 5 7 33 syl2anc φseqM+Fdom
35 22 23 24 32 34 isumclim2 φseqM+FkMFk
36 eqidd φkMGk=Gk
37 2 eftval k0Gk=Akk!
38 37 adantl φk0Gk=Akk!
39 reeftcl Ak0Akk!
40 11 39 sylan φk0Akk!
41 38 40 eqeltrd φk0Gk
42 26 41 syldan φkMGk
43 42 recnd φkMGk
44 11 recnd φA
45 2 eftlcvg AM0seqM+Gdom
46 44 7 45 syl2anc φseqM+Gdom
47 22 23 36 43 46 isumclim2 φseqM+GkMGk
48 eftabs Ak0Akk!=Akk!
49 5 48 sylan φk0Akk!=Akk!
50 28 fveq2d φk0Fk=Akk!
51 49 50 38 3eqtr4rd φk0Gk=Fk
52 26 51 syldan φkMGk=Fk
53 22 35 47 23 32 52 iserabs φkMFkkMGk
54 nn0uz 0=0
55 0zd φ0
56 4 nncnd φM
57 nn0cn j0j
58 nn0ex 0V
59 58 mptex n0Ann!V
60 2 59 eqeltri GV
61 60 shftval4 MjGshift- Mj=GM+j
62 56 57 61 syl2an φj0Gshift- Mj=GM+j
63 nn0addcl M0j0M+j0
64 7 63 sylan φj0M+j0
65 2 eftval M+j0GM+j=AM+jM+j!
66 64 65 syl φj0GM+j=AM+jM+j!
67 11 adantr φj0A
68 reeftcl AM+j0AM+jM+j!
69 67 64 68 syl2anc φj0AM+jM+j!
70 66 69 eqeltrd φj0GM+j
71 oveq2 n=j1M+1n=1M+1j
72 71 oveq2d n=jAMM!1M+1n=AMM!1M+1j
73 ovex AMM!1M+1jV
74 72 3 73 fvmpt j0Hj=AMM!1M+1j
75 74 adantl φj0Hj=AMM!1M+1j
76 14 18 nndivred φAMM!
77 76 adantr φj0AMM!
78 4 peano2nnd φM+1
79 78 nnrecred φ1M+1
80 reexpcl 1M+1j01M+1j
81 79 80 sylan φj01M+1j
82 77 81 remulcld φj0AMM!1M+1j
83 67 64 reexpcld φj0AM+j
84 14 adantr φj0AM
85 64 faccld φj0M+j!
86 85 nnred φj0M+j!
87 86 82 remulcld φj0M+j!AMM!1M+1j
88 7 adantr φj0M0
89 uzid MMM
90 23 89 syl φMM
91 uzaddcl MMj0M+jM
92 90 91 sylan φj0M+jM
93 5 absge0d φ0A
94 93 adantr φj00A
95 6 adantr φj0A1
96 67 88 92 94 95 leexp2rd φj0AM+jAM
97 18 adantr φj0M!
98 nnexpcl M+1j0M+1j
99 78 98 sylan φj0M+1j
100 97 99 nnmulcld φj0M!M+1j
101 100 nnred φj0M!M+1j
102 11 7 93 expge0d φ0AM
103 14 102 jca φAM0AM
104 103 adantr φj0AM0AM
105 faclbnd6 M0j0M!M+1jM+j!
106 7 105 sylan φj0M!M+1jM+j!
107 lemul1a M!M+1jM+j!AM0AMM!M+1jM+j!M!M+1jAMM+j!AM
108 101 86 104 106 107 syl31anc φj0M!M+1jAMM+j!AM
109 86 84 remulcld φj0M+j!AM
110 100 nnrpd φj0M!M+1j+
111 84 109 110 lemuldiv2d φj0M!M+1jAMM+j!AMAMM+j!AMM!M+1j
112 108 111 mpbid φj0AMM+j!AMM!M+1j
113 85 nncnd φj0M+j!
114 14 recnd φAM
115 114 adantr φj0AM
116 100 nncnd φj0M!M+1j
117 100 nnne0d φj0M!M+1j0
118 113 115 116 117 divassd φj0M+j!AMM!M+1j=M+j!AMM!M+1j
119 78 nncnd φM+1
120 119 adantr φj0M+1
121 78 adantr φj0M+1
122 121 nnne0d φj0M+10
123 nn0z j0j
124 123 adantl φj0j
125 120 122 124 exprecd φj01M+1j=1M+1j
126 125 oveq2d φj0AMM!1M+1j=AMM!1M+1j
127 76 recnd φAMM!
128 127 adantr φj0AMM!
129 99 nncnd φj0M+1j
130 99 nnne0d φj0M+1j0
131 128 129 130 divrecd φj0AMM!M+1j=AMM!1M+1j
132 18 nncnd φM!
133 132 adantr φj0M!
134 facne0 M0M!0
135 7 134 syl φM!0
136 135 adantr φj0M!0
137 115 133 129 136 130 divdiv1d φj0AMM!M+1j=AMM!M+1j
138 126 131 137 3eqtr2rd φj0AMM!M+1j=AMM!1M+1j
139 138 oveq2d φj0M+j!AMM!M+1j=M+j!AMM!1M+1j
140 118 139 eqtrd φj0M+j!AMM!M+1j=M+j!AMM!1M+1j
141 112 140 breqtrd φj0AMM+j!AMM!1M+1j
142 83 84 87 96 141 letrd φj0AM+jM+j!AMM!1M+1j
143 85 nngt0d φj00<M+j!
144 ledivmul AM+jAMM!1M+1jM+j!0<M+j!AM+jM+j!AMM!1M+1jAM+jM+j!AMM!1M+1j
145 83 82 86 143 144 syl112anc φj0AM+jM+j!AMM!1M+1jAM+jM+j!AMM!1M+1j
146 142 145 mpbird φj0AM+jM+j!AMM!1M+1j
147 66 146 eqbrtrd φj0GM+jAMM!1M+1j
148 0z 0
149 23 znegcld φM
150 60 seqshft 0Mseq0+Gshift- M=seq0- M+Gshift- M
151 148 149 150 sylancr φseq0+Gshift- M=seq0- M+Gshift- M
152 0cn 0
153 subneg 0M0- M=0+M
154 152 153 mpan M0- M=0+M
155 addlid M0+M=M
156 154 155 eqtrd M0- M=M
157 56 156 syl φ0- M=M
158 157 seqeq1d φseq0- M+G=seqM+G
159 158 47 eqbrtrd φseq0- M+GkMGk
160 seqex seq0- M+GV
161 climshft Mseq0- M+GVseq0- M+Gshift- MkMGkseq0- M+GkMGk
162 149 160 161 sylancl φseq0- M+Gshift- MkMGkseq0- M+GkMGk
163 159 162 mpbird φseq0- M+Gshift- MkMGk
164 ovex seq0- M+Gshift- MV
165 sumex kMGkV
166 164 165 breldm seq0- M+Gshift- MkMGkseq0- M+Gshift- Mdom
167 163 166 syl φseq0- M+Gshift- Mdom
168 151 167 eqeltrd φseq0+Gshift- Mdom
169 4 nnge1d φ1M
170 1nn 1
171 nnleltp1 1M1M1<M+1
172 170 4 171 sylancr φ1M1<M+1
173 169 172 mpbid φ1<M+1
174 16 nn0ge0d φ0M+1
175 17 174 absidd φM+1=M+1
176 173 175 breqtrrd φ1<M+1
177 eqid n01M+1n=n01M+1n
178 ovex 1M+1jV
179 71 177 178 fvmpt j0n01M+1nj=1M+1j
180 179 adantl φj0n01M+1nj=1M+1j
181 119 176 180 georeclim φseq0+n01M+1nM+1M+1-1
182 81 recnd φj01M+1j
183 180 182 eqeltrd φj0n01M+1nj
184 180 oveq2d φj0AMM!n01M+1nj=AMM!1M+1j
185 75 184 eqtr4d φj0Hj=AMM!n01M+1nj
186 54 55 127 181 183 185 isermulc2 φseq0+HAMM!M+1M+1-1
187 ax-1cn 1
188 pncan M1M+1-1=M
189 56 187 188 sylancl φM+1-1=M
190 189 oveq2d φM+1M+1-1=M+1M
191 190 oveq2d φAMM!M+1M+1-1=AMM!M+1M
192 17 4 nndivred φM+1M
193 192 recnd φM+1M
194 114 193 132 135 div23d φAMM+1MM!=AMM!M+1M
195 191 194 eqtr4d φAMM!M+1M+1-1=AMM+1MM!
196 114 193 132 135 divassd φAMM+1MM!=AMM+1MM!
197 4 nnne0d φM0
198 119 56 132 197 135 divdiv1d φM+1MM!=M+1MM!
199 56 132 mulcomd φMM!=M! M
200 199 oveq2d φM+1MM!=M+1M! M
201 198 200 eqtrd φM+1MM!=M+1M! M
202 201 oveq2d φAMM+1MM!=AMM+1M! M
203 195 196 202 3eqtrd φAMM!M+1M+1-1=AMM+1M! M
204 186 203 breqtrd φseq0+HAMM+1M! M
205 seqex seq0+HV
206 ovex AMM+1M! MV
207 205 206 breldm seq0+HAMM+1M! Mseq0+Hdom
208 204 207 syl φseq0+Hdom
209 54 55 62 70 75 82 147 168 208 isumle φj0GM+jj0AMM!1M+1j
210 eqid 0+M=0+M
211 fveq2 k=M+jGk=GM+j
212 56 addlidd φ0+M=M
213 212 fveq2d φ0+M=M
214 213 eleq2d φk0+MkM
215 214 biimpa φk0+MkM
216 215 43 syldan φk0+MGk
217 54 210 211 23 55 216 isumshft φk0+MGk=j0GM+j
218 213 sumeq1d φk0+MGk=kMGk
219 217 218 eqtr3d φj0GM+j=kMGk
220 82 recnd φj0AMM!1M+1j
221 54 55 75 220 204 isumclim φj0AMM!1M+1j=AMM+1M! M
222 209 219 221 3brtr3d φkMGkAMM+1M! M
223 10 13 21 53 222 letrd φkMFkAMM+1M! M