Metamath Proof Explorer


Theorem evlsbagval

Description: Polynomial evaluation builder for a bag of variables. EDITORIAL: This theorem should stay in my mathbox until there's another use, since .0. and .1. using U instead of S may not be convenient. (Contributed by SN, 29-Jul-2024)

Ref Expression
Hypotheses evlsbagval.q Q=IevalSubSR
evlsbagval.p P=ImPolyU
evlsbagval.u U=S𝑠R
evlsbagval.w W=BaseP
evlsbagval.k K=BaseS
evlsbagval.m M=mulGrpS
evlsbagval.e ×˙=M
evlsbagval.z 0˙=0U
evlsbagval.o 1˙=1U
evlsbagval.d D=h0I|h-1Fin
evlsbagval.f F=sDifs=B1˙0˙
evlsbagval.i φIV
evlsbagval.s φSCRing
evlsbagval.r φRSubRingS
evlsbagval.a φAKI
evlsbagval.b φBD
Assertion evlsbagval φFWQFA=MvIBv×˙Av

Proof

Step Hyp Ref Expression
1 evlsbagval.q Q=IevalSubSR
2 evlsbagval.p P=ImPolyU
3 evlsbagval.u U=S𝑠R
4 evlsbagval.w W=BaseP
5 evlsbagval.k K=BaseS
6 evlsbagval.m M=mulGrpS
7 evlsbagval.e ×˙=M
8 evlsbagval.z 0˙=0U
9 evlsbagval.o 1˙=1U
10 evlsbagval.d D=h0I|h-1Fin
11 evlsbagval.f F=sDifs=B1˙0˙
12 evlsbagval.i φIV
13 evlsbagval.s φSCRing
14 evlsbagval.r φRSubRingS
15 evlsbagval.a φAKI
16 evlsbagval.b φBD
17 fvexd φBaseUV
18 ovexd φ0IV
19 10 18 rabexd φDV
20 3 subrgring RSubRingSURing
21 14 20 syl φURing
22 eqid BaseU=BaseU
23 22 9 ringidcl URing1˙BaseU
24 21 23 syl φ1˙BaseU
25 22 8 ring0cl URing0˙BaseU
26 21 25 syl φ0˙BaseU
27 24 26 ifcld φifs=B1˙0˙BaseU
28 27 adantr φsDifs=B1˙0˙BaseU
29 28 11 fmptd φF:DBaseU
30 17 19 29 elmapdd φFBaseUD
31 eqid ImPwSerU=ImPwSerU
32 eqid BaseImPwSerU=BaseImPwSerU
33 31 22 10 32 12 psrbas φBaseImPwSerU=BaseUD
34 30 33 eleqtrrd φFBaseImPwSerU
35 19 26 11 sniffsupp φfinSupp0˙F
36 2 31 32 8 4 mplelbas FWFBaseImPwSerUfinSupp0˙F
37 34 35 36 sylanbrc φFW
38 eqid S=S
39 1 2 4 3 10 5 6 7 38 12 13 14 37 15 evlsvvval φQFA=SbDFbSMvIbv×˙Av
40 16 snssd φBD
41 resmpt BDbDFbSMvIbv×˙AvB=bBFbSMvIbv×˙Av
42 40 41 syl φbDFbSMvIbv×˙AvB=bBFbSMvIbv×˙Av
43 42 oveq2d φSbDFbSMvIbv×˙AvB=SbBFbSMvIbv×˙Av
44 eqid 0S=0S
45 13 crngringd φSRing
46 45 ringcmnd φSCMnd
47 45 adantr φbDSRing
48 3 subrgbas RSubRingSR=BaseU
49 5 subrgss RSubRingSRK
50 48 49 eqsstrrd RSubRingSBaseUK
51 14 50 syl φBaseUK
52 29 51 fssd φF:DK
53 52 ffvelcdmda φbDFbK
54 12 adantr φbDIV
55 13 adantr φbDSCRing
56 15 adantr φbDAKI
57 simpr φbDbD
58 10 5 6 7 54 55 56 57 evlsvvvallem φbDMvIbv×˙AvK
59 5 38 47 53 58 ringcld φbDFbSMvIbv×˙AvK
60 59 fmpttd φbDFbSMvIbv×˙Av:DK
61 eldifsnneq bDB¬b=B
62 61 adantl φbDB¬b=B
63 62 iffalsed φbDBifb=B1˙0˙=0˙
64 eqeq1 s=bs=Bb=B
65 64 ifbid s=bifs=B1˙0˙=ifb=B1˙0˙
66 eldifi bDBbD
67 66 adantl φbDBbD
68 9 fvexi 1˙V
69 8 fvexi 0˙V
70 68 69 ifex ifb=B1˙0˙V
71 70 a1i φbDBifb=B1˙0˙V
72 11 65 67 71 fvmptd3 φbDBFb=ifb=B1˙0˙
73 3 44 subrg0 RSubRingS0S=0U
74 73 8 eqtr4di RSubRingS0S=0˙
75 14 74 syl φ0S=0˙
76 75 adantr φbDB0S=0˙
77 63 72 76 3eqtr4d φbDBFb=0S
78 77 oveq1d φbDBFbSMvIbv×˙Av=0SSMvIbv×˙Av
79 66 58 sylan2 φbDBMvIbv×˙AvK
80 5 38 44 ringlz SRingMvIbv×˙AvK0SSMvIbv×˙Av=0S
81 45 79 80 syl2an2r φbDB0SSMvIbv×˙Av=0S
82 78 81 eqtrd φbDBFbSMvIbv×˙Av=0S
83 82 19 suppss2 φbDFbSMvIbv×˙Avsupp0SB
84 10 2 3 4 5 6 7 38 12 13 14 37 15 evlsvvvallem2 φfinSupp0SbDFbSMvIbv×˙Av
85 5 44 46 19 60 83 84 gsumres φSbDFbSMvIbv×˙AvB=SbDFbSMvIbv×˙Av
86 13 crnggrpd φSGrp
87 86 grpmndd φSMnd
88 52 16 ffvelcdmd φFBK
89 10 5 6 7 12 13 15 16 evlsvvvallem φMvIBv×˙AvK
90 5 38 45 88 89 ringcld φFBSMvIBv×˙AvK
91 fveq2 b=BFb=FB
92 fveq1 b=Bbv=Bv
93 92 oveq1d b=Bbv×˙Av=Bv×˙Av
94 93 mpteq2dv b=BvIbv×˙Av=vIBv×˙Av
95 94 oveq2d b=BMvIbv×˙Av=MvIBv×˙Av
96 91 95 oveq12d b=BFbSMvIbv×˙Av=FBSMvIBv×˙Av
97 5 96 gsumsn SMndBDFBSMvIBv×˙AvKSbBFbSMvIbv×˙Av=FBSMvIBv×˙Av
98 87 16 90 97 syl3anc φSbBFbSMvIbv×˙Av=FBSMvIBv×˙Av
99 iftrue s=Bifs=B1˙0˙=1˙
100 68 a1i φ1˙V
101 11 99 16 100 fvmptd3 φFB=1˙
102 eqid 1S=1S
103 3 102 subrg1 RSubRingS1S=1U
104 14 103 syl φ1S=1U
105 9 101 104 3eqtr4a φFB=1S
106 105 oveq1d φFBSMvIBv×˙Av=1SSMvIBv×˙Av
107 5 38 102 45 89 ringlidmd φ1SSMvIBv×˙Av=MvIBv×˙Av
108 98 106 107 3eqtrd φSbBFbSMvIbv×˙Av=MvIBv×˙Av
109 43 85 108 3eqtr3d φSbDFbSMvIbv×˙Av=MvIBv×˙Av
110 39 109 eqtrd φQFA=MvIBv×˙Av
111 37 110 jca φFWQFA=MvIBv×˙Av