Metamath Proof Explorer


Theorem fltnltalem

Description: Lemma for fltnlta . A lower bound for A based on pwdif . (Contributed by Steven Nguyen, 22-Aug-2023)

Ref Expression
Hypotheses fltltc.a φA
fltltc.b φB
fltltc.c φC
fltltc.n φN3
fltltc.1 φAN+BN=CN
Assertion fltnltalem φCBCN1+N1BN1<AN

Proof

Step Hyp Ref Expression
1 fltltc.a φA
2 fltltc.b φB
3 fltltc.c φC
4 fltltc.n φN3
5 fltltc.1 φAN+BN=CN
6 3 nnred φC
7 eluzge3nn N3N
8 nnm1nn0 NN10
9 4 7 8 3syl φN10
10 6 9 reexpcld φCN1
11 9 nn0red φN1
12 2 nnred φB
13 12 9 reexpcld φBN1
14 11 13 remulcld φN1BN1
15 10 14 readdcld φCN1+N1BN1
16 fzofi 0..^NFin
17 16 a1i φ0..^NFin
18 6 adantr φk0..^NC
19 elfzonn0 k0..^Nk0
20 19 adantl φk0..^Nk0
21 18 20 reexpcld φk0..^NCk
22 12 adantr φk0..^NB
23 fzonnsub k0..^NNk
24 23 adantl φk0..^NNk
25 nnm1nn0 NkN-k-10
26 24 25 syl φk0..^NN-k-10
27 22 26 reexpcld φk0..^NBN-k-1
28 21 27 remulcld φk0..^NCkBN-k-1
29 17 28 fsumrecl φk0..^NCkBN-k-1
30 1 2 3 4 5 fltltc φB<C
31 difrp BCB<CCB+
32 12 6 31 syl2anc φB<CCB+
33 30 32 mpbid φCB+
34 fzofi 0..^N1Fin
35 34 a1i φ0..^N1Fin
36 6 adantr φk0..^N1C
37 elfzonn0 k0..^N1k0
38 37 adantl φk0..^N1k0
39 36 38 reexpcld φk0..^N1Ck
40 12 adantr φk0..^N1B
41 fzonnsub k0..^N1N-1-k
42 41 nnnn0d k0..^N1N-1-k0
43 42 adantl φk0..^N1N-1-k0
44 40 43 reexpcld φk0..^N1BN-1-k
45 39 44 remulcld φk0..^N1CkBN-1-k
46 35 45 fsumrecl φk0..^N1CkBN-1-k
47 fzofi 0..^N-1-1Fin
48 47 a1i φ0..^N-1-1Fin
49 12 adantr φk0..^N-1-1B
50 elfzonn0 k0..^N-1-1k0
51 50 adantl φk0..^N-1-1k0
52 49 51 reexpcld φk0..^N-1-1Bk
53 simpr φk0..^N-1-1k0..^N-1-1
54 1nn0 10
55 elfzoext k0..^N-1-110k0..^N1-1+1
56 53 54 55 sylancl φk0..^N-1-1k0..^N1-1+1
57 nnnn0 NN0
58 4 7 57 3syl φN0
59 58 nn0cnd φN
60 1cnd φ1
61 59 60 subcld φN1
62 61 60 npcand φN1-1+1=N1
63 62 oveq2d φ0..^N1-1+1=0..^N1
64 63 adantr φk0..^N-1-10..^N1-1+1=0..^N1
65 56 64 eleqtrd φk0..^N-1-1k0..^N1
66 65 42 syl φk0..^N-1-1N-1-k0
67 49 66 reexpcld φk0..^N-1-1BN-1-k
68 52 67 remulcld φk0..^N-1-1BkBN-1-k
69 48 68 fsumrecl φk0..^N-1-1BkBN-1-k
70 sub1m1 NN-1-1=N2
71 59 70 syl φN-1-1=N2
72 uz3m2nn N3N2
73 4 72 syl φN2
74 71 73 eqeltrd φN-1-1
75 74 nnnn0d φN-1-10
76 12 75 reexpcld φBN-1-1
77 76 12 remulcld φBN-1-1B
78 69 77 readdcld φk0..^N-1-1BkBN-1-k+BN-1-1B
79 6 adantr φk0..^N-1-1C
80 79 51 reexpcld φk0..^N-1-1Ck
81 80 67 remulcld φk0..^N-1-1CkBN-1-k
82 48 81 fsumrecl φk0..^N-1-1CkBN-1-k
83 6 75 reexpcld φCN-1-1
84 83 12 remulcld φCN-1-1B
85 82 84 readdcld φk0..^N-1-1CkBN-1-k+CN-1-1B
86 2 nncnd φB
87 uzuzle23 N3N2
88 4 87 syl φN2
89 uz2m1nn N2N1
90 88 89 syl φN1
91 expm1t BN1BN1=BN-1-1B
92 86 90 91 syl2anc φBN1=BN-1-1B
93 92 eqcomd φBN-1-1B=BN1
94 93 oveq2d φN-1-1BN1+BN-1-1B=N-1-1BN1+BN1
95 61 60 subcld φN-1-1
96 86 9 expcld φBN1
97 95 96 adddirp1d φN1-1+1BN1=N-1-1BN1+BN1
98 62 oveq1d φN1-1+1BN1=N1BN1
99 94 97 98 3eqtr2rd φN1BN1=N-1-1BN1+BN-1-1B
100 14 99 eqled φN1BN1N-1-1BN1+BN-1-1B
101 37 nn0cnd k0..^N1k
102 65 101 syl φk0..^N-1-1k
103 61 adantr φk0..^N-1-1N1
104 102 103 pncan3d φk0..^N-1-1k+N1-k=N1
105 104 oveq2d φk0..^N-1-1Bk+N1-k=BN1
106 105 sumeq2dv φk0..^N-1-1Bk+N1-k=k0..^N-1-1BN1
107 86 adantr φk0..^N-1-1B
108 107 66 51 expaddd φk0..^N-1-1Bk+N1-k=BkBN-1-k
109 108 sumeq2dv φk0..^N-1-1Bk+N1-k=k0..^N-1-1BkBN-1-k
110 fsumconst 0..^N-1-1FinBN1k0..^N-1-1BN1=0..^N-1-1BN1
111 48 96 110 syl2anc φk0..^N-1-1BN1=0..^N-1-1BN1
112 hashfzo0 N-1-100..^N-1-1=N-1-1
113 75 112 syl φ0..^N-1-1=N-1-1
114 113 oveq1d φ0..^N-1-1BN1=N-1-1BN1
115 111 114 eqtrd φk0..^N-1-1BN1=N-1-1BN1
116 106 109 115 3eqtr3d φk0..^N-1-1BkBN-1-k=N-1-1BN1
117 116 oveq1d φk0..^N-1-1BkBN-1-k+BN-1-1B=N-1-1BN1+BN-1-1B
118 100 117 breqtrrd φN1BN1k0..^N-1-1BkBN-1-k+BN-1-1B
119 2 nnrpd φB+
120 119 rpge0d φ0B
121 120 adantr φk0..^N-1-10B
122 49 66 121 expge0d φk0..^N-1-10BN-1-k
123 12 6 30 ltled φBC
124 123 adantr φk0..^N-1-1BC
125 leexp1a BCk00BBCBkCk
126 49 79 51 121 124 125 syl32anc φk0..^N-1-1BkCk
127 52 80 67 122 126 lemul1ad φk0..^N-1-1BkBN-1-kCkBN-1-k
128 48 68 81 127 fsumle φk0..^N-1-1BkBN-1-kk0..^N-1-1CkBN-1-k
129 3 nnrpd φC+
130 119 129 74 30 ltexp1dd φBN-1-1<CN-1-1
131 76 83 119 130 ltmul1dd φBN-1-1B<CN-1-1B
132 69 77 82 84 128 131 leltaddd φk0..^N-1-1BkBN-1-k+BN-1-1B<k0..^N-1-1CkBN-1-k+CN-1-1B
133 14 78 85 118 132 lelttrd φN1BN1<k0..^N-1-1CkBN-1-k+CN-1-1B
134 61 60 nncand φN-1-N-1-1=1
135 134 oveq2d φBN-1-N-1-1=B1
136 86 exp1d φB1=B
137 135 136 eqtrd φBN-1-N-1-1=B
138 137 oveq2d φCN-1-1BN-1-N-1-1=CN-1-1B
139 138 oveq2d φk0..^N-1-1CkBN-1-k+CN-1-1BN-1-N-1-1=k0..^N-1-1CkBN-1-k+CN-1-1B
140 133 139 breqtrrd φN1BN1<k0..^N-1-1CkBN-1-k+CN-1-1BN-1-N-1-1
141 0zd φ0
142 141 peano2zd φ0+1
143 0cn 0
144 ax-1cn 1
145 143 144 144 addassi 0+1+1=0+1+1
146 144 144 addcli 1+1
147 146 addlidi 0+1+1=1+1
148 1p1e2 1+1=2
149 145 147 148 3eqtri 0+1+1=2
150 149 a1i φ0+1+1=2
151 150 fveq2d φ0+1+1=2
152 88 151 eleqtrrd φN0+1+1
153 eluzp1m1 0+1N0+1+1N10+1
154 142 152 153 syl2anc φN10+1
155 eluzp1m1 0N10+1N-1-10
156 141 154 155 syl2anc φN-1-10
157 3 nncnd φC
158 157 adantr φk0..^N1C
159 158 38 expcld φk0..^N1Ck
160 86 adantr φk0..^N1B
161 160 43 expcld φk0..^N1BN-1-k
162 159 161 mulcld φk0..^N1CkBN-1-k
163 oveq2 k=N-1-1Ck=CN-1-1
164 oveq2 k=N-1-1N-1-k=N-1-N-1-1
165 164 oveq2d k=N-1-1BN-1-k=BN-1-N-1-1
166 163 165 oveq12d k=N-1-1CkBN-1-k=CN-1-1BN-1-N-1-1
167 9 nn0zd φN1
168 156 162 166 167 fzosumm1 φk0..^N1CkBN-1-k=k0..^N-1-1CkBN-1-k+CN-1-1BN-1-N-1-1
169 140 168 breqtrrd φN1BN1<k0..^N1CkBN-1-k
170 14 46 10 169 ltadd2dd φCN1+N1BN1<CN1+k0..^N1CkBN-1-k
171 35 162 fsumcl φk0..^N1CkBN-1-k
172 157 9 expcld φCN1
173 171 172 addcomd φk0..^N1CkBN-1-k+CN1=CN1+k0..^N1CkBN-1-k
174 170 173 breqtrrd φCN1+N1BN1<k0..^N1CkBN-1-k+CN1
175 59 adantr φk0..^N1N
176 101 adantl φk0..^N1k
177 1cnd φk0..^N11
178 175 176 177 sub32d φk0..^N1N-k-1=N-1-k
179 178 oveq2d φk0..^N1BN-k-1=BN-1-k
180 179 oveq2d φk0..^N1CkBN-k-1=CkBN-1-k
181 180 sumeq2dv φk0..^N1CkBN-k-1=k0..^N1CkBN-1-k
182 59 59 60 nnncand φN-N1-1=NN
183 59 subidd φNN=0
184 182 183 eqtrd φN-N1-1=0
185 184 oveq2d φBN-N1-1=B0
186 86 exp0d φB0=1
187 185 186 eqtrd φBN-N1-1=1
188 187 oveq2d φCN1BN-N1-1=CN11
189 10 recnd φCN1
190 189 mulridd φCN11=CN1
191 188 190 eqtrd φCN1BN-N1-1=CN1
192 181 191 oveq12d φk0..^N1CkBN-k-1+CN1BN-N1-1=k0..^N1CkBN-1-k+CN1
193 174 192 breqtrrd φCN1+N1BN1<k0..^N1CkBN-k-1+CN1BN-N1-1
194 elnn0uz N10N10
195 9 194 sylib φN10
196 157 adantr φk0..^NC
197 196 20 expcld φk0..^NCk
198 86 adantr φk0..^NB
199 198 26 expcld φk0..^NBN-k-1
200 197 199 mulcld φk0..^NCkBN-k-1
201 oveq2 k=N1Ck=CN1
202 oveq2 k=N1Nk=NN1
203 202 oveq1d k=N1N-k-1=N-N1-1
204 203 oveq2d k=N1BN-k-1=BN-N1-1
205 201 204 oveq12d k=N1CkBN-k-1=CN1BN-N1-1
206 58 nn0zd φN
207 195 200 205 206 fzosumm1 φk0..^NCkBN-k-1=k0..^N1CkBN-k-1+CN1BN-N1-1
208 193 207 breqtrrd φCN1+N1BN1<k0..^NCkBN-k-1
209 15 29 33 208 ltmul2dd φCBCN1+N1BN1<CBk0..^NCkBN-k-1
210 pwdif N0CBCNBN=CBk0..^NCkBN-k-1
211 58 157 86 210 syl3anc φCNBN=CBk0..^NCkBN-k-1
212 209 211 breqtrrd φCBCN1+N1BN1<CNBN
213 1 nncnd φA
214 213 58 expcld φAN
215 86 58 expcld φBN
216 214 215 5 mvlraddd φAN=CNBN
217 212 216 breqtrrd φCBCN1+N1BN1<AN