Metamath Proof Explorer


Theorem fourierdlem30

Description: Sum of three small pieces is less than ε. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem30.ibl φxIFG𝐿1
fourierlemreimleblemlte22.f φxIF
fourierdlem30.g φxIG
fourierdlem30.a φA
fourierdlem30.x X=A
fourierdlem30.c φC
fourierdlem30.y Y=C
fourierdlem30.z Z=IFGdx
fourierdlem30.e φE+
fourierdlem30.r φR
fourierdlem30.ler φX+Y+ZE+1R
fourierdlem30.b φB
fourierdlem30.12 φB1
fourierdlem30.d φD
fourierdlem30.14 φD1
Assertion fourierdlem30 φABR-CDR-IFGRdx<E

Proof

Step Hyp Ref Expression
1 fourierdlem30.ibl φxIFG𝐿1
2 fourierlemreimleblemlte22.f φxIF
3 fourierdlem30.g φxIG
4 fourierdlem30.a φA
5 fourierdlem30.x X=A
6 fourierdlem30.c φC
7 fourierdlem30.y Y=C
8 fourierdlem30.z Z=IFGdx
9 fourierdlem30.e φE+
10 fourierdlem30.r φR
11 fourierdlem30.ler φX+Y+ZE+1R
12 fourierdlem30.b φB
13 fourierdlem30.12 φB1
14 fourierdlem30.d φD
15 fourierdlem30.14 φD1
16 10 recnd φR
17 0red φ0
18 1red φ1
19 0lt1 0<1
20 19 a1i φ0<1
21 4 abscld φA
22 5 21 eqeltrid φX
23 6 abscld φC
24 7 23 eqeltrid φY
25 22 24 readdcld φX+Y
26 3 negcld φxIG
27 2 26 mulcld φxIFG
28 27 1 itgcl φIFGdx
29 28 abscld φIFGdx
30 8 29 eqeltrid φZ
31 25 30 readdcld φX+Y+Z
32 9 rpred φE
33 9 rpne0d φE0
34 31 32 33 redivcld φX+Y+ZE
35 34 18 readdcld φX+Y+ZE+1
36 4 absge0d φ0A
37 36 5 breqtrrdi φ0X
38 6 absge0d φ0C
39 38 7 breqtrrdi φ0Y
40 22 24 37 39 addge0d φ0X+Y
41 28 absge0d φ0IFGdx
42 41 8 breqtrrdi φ0Z
43 25 30 40 42 addge0d φ0X+Y+Z
44 31 9 43 divge0d φ0X+Y+ZE
45 18 34 addge02d φ0X+Y+ZE1X+Y+ZE+1
46 44 45 mpbid φ1X+Y+ZE+1
47 18 35 10 46 11 letrd φ1R
48 17 18 10 20 47 ltletrd φ0<R
49 48 gt0ne0d φR0
50 12 16 49 divnegd φBR=BR
51 50 oveq2d φABR=ABR
52 12 negcld φB
53 4 52 16 49 divassd φABR=ABR
54 51 53 eqtr4d φABR=ABR
55 14 16 49 divnegd φDR=DR
56 55 oveq2d φCDR=CDR
57 14 negcld φD
58 6 57 16 49 divassd φCDR=CDR
59 56 58 eqtr4d φCDR=CDR
60 54 59 oveq12d φABRCDR=ABRCDR
61 4 52 mulcld φAB
62 6 57 mulcld φCD
63 61 62 16 49 divsubdird φABCDR=ABRCDR
64 60 63 eqtr4d φABRCDR=ABCDR
65 16 49 reccld φ1R
66 65 27 1 itgmulc2 φ1RIFGdx=I1RFGdx
67 28 16 49 divrec2d φIFGdxR=1RIFGdx
68 16 adantr φxIR
69 49 adantr φxIR0
70 3 68 69 divnegd φxIGR=GR
71 70 oveq2d φxIFGR=FGR
72 2 26 68 69 divassd φxIFGR=FGR
73 27 68 69 divrec2d φxIFGR=1RFG
74 71 72 73 3eqtr2d φxIFGR=1RFG
75 74 itgeq2dv φIFGRdx=I1RFGdx
76 66 67 75 3eqtr4rd φIFGRdx=IFGdxR
77 64 76 oveq12d φABR-CDR-IFGRdx=ABCDRIFGdxR
78 61 62 subcld φABCD
79 78 28 16 49 divsubdird φAB-CD-IFGdxR=ABCDRIFGdxR
80 77 79 eqtr4d φABR-CDR-IFGRdx=AB-CD-IFGdxR
81 80 fveq2d φABR-CDR-IFGRdx=AB-CD-IFGdxR
82 78 28 subcld φAB-CD-IFGdx
83 82 16 49 absdivd φAB-CD-IFGdxR=AB-CD-IFGdxR
84 17 10 48 ltled φ0R
85 10 84 absidd φR=R
86 85 oveq2d φAB-CD-IFGdxR=AB-CD-IFGdxR
87 81 83 86 3eqtrd φABR-CDR-IFGRdx=AB-CD-IFGdxR
88 82 abscld φAB-CD-IFGdx
89 88 10 49 redivcld φAB-CD-IFGdxR
90 21 23 readdcld φA+C
91 90 29 readdcld φA+C+IFGdx
92 91 10 49 redivcld φA+C+IFGdxR
93 10 48 elrpd φR+
94 78 abscld φABCD
95 94 29 readdcld φABCD+IFGdx
96 78 28 abs2dif2d φAB-CD-IFGdxABCD+IFGdx
97 61 abscld φAB
98 62 abscld φCD
99 97 98 readdcld φAB+CD
100 61 62 abs2dif2d φABCDAB+CD
101 4 52 absmuld φAB=AB
102 52 abscld φB
103 12 absnegd φB=B
104 103 13 eqbrtrd φB1
105 102 18 21 36 104 lemul2ad φABA1
106 21 recnd φA
107 106 mulridd φA1=A
108 105 107 breqtrd φABA
109 101 108 eqbrtrd φABA
110 6 57 absmuld φCD=CD
111 57 abscld φD
112 14 absnegd φD=D
113 112 15 eqbrtrd φD1
114 111 18 23 38 113 lemul2ad φCDC1
115 23 recnd φC
116 115 mulridd φC1=C
117 114 116 breqtrd φCDC
118 110 117 eqbrtrd φCDC
119 97 98 21 23 109 118 le2addd φAB+CDA+C
120 94 99 90 100 119 letrd φABCDA+C
121 94 90 29 120 leadd1dd φABCD+IFGdxA+C+IFGdx
122 88 95 91 96 121 letrd φAB-CD-IFGdxA+C+IFGdx
123 88 91 93 122 lediv1dd φAB-CD-IFGdxRA+C+IFGdxR
124 34 ltp1d φX+Y+ZE<X+Y+ZE+1
125 17 34 35 44 124 lelttrd φ0<X+Y+ZE+1
126 125 gt0ne0d φX+Y+ZE+10
127 91 35 126 redivcld φA+C+IFGdxX+Y+ZE+1
128 34 44 ge0p1rpd φX+Y+ZE+1+
129 5 eqcomi A=X
130 7 eqcomi C=Y
131 129 130 oveq12i A+C=X+Y
132 8 eqcomi IFGdx=Z
133 131 132 oveq12i A+C+IFGdx=X+Y+Z
134 43 133 breqtrrdi φ0A+C+IFGdx
135 128 93 91 134 11 lediv2ad φA+C+IFGdxRA+C+IFGdxX+Y+ZE+1
136 133 oveq1i A+C+IFGdxX+Y+ZE+1=X+Y+ZX+Y+ZE+1
137 oveq1 X+Y+Z=0X+Y+ZX+Y+ZE+1=0X+Y+ZE+1
138 137 adantl φX+Y+Z=0X+Y+ZX+Y+ZE+1=0X+Y+ZE+1
139 34 recnd φX+Y+ZE
140 18 recnd φ1
141 139 140 addcld φX+Y+ZE+1
142 141 adantr φX+Y+Z=0X+Y+ZE+1
143 oveq1 X+Y+Z=0X+Y+ZE=0E
144 143 adantl φX+Y+Z=0X+Y+ZE=0E
145 9 rpcnd φE
146 145 adantr φX+Y+Z=0E
147 33 adantr φX+Y+Z=0E0
148 146 147 div0d φX+Y+Z=00E=0
149 144 148 eqtrd φX+Y+Z=0X+Y+ZE=0
150 149 oveq1d φX+Y+Z=0X+Y+ZE+1=0+1
151 0p1e1 0+1=1
152 150 151 eqtrdi φX+Y+Z=0X+Y+ZE+1=1
153 ax-1ne0 10
154 153 a1i φX+Y+Z=010
155 152 154 eqnetrd φX+Y+Z=0X+Y+ZE+10
156 142 155 div0d φX+Y+Z=00X+Y+ZE+1=0
157 138 156 eqtrd φX+Y+Z=0X+Y+ZX+Y+ZE+1=0
158 9 rpgt0d φ0<E
159 158 adantr φX+Y+Z=00<E
160 157 159 eqbrtrd φX+Y+Z=0X+Y+ZX+Y+ZE+1<E
161 31 adantr φ¬X+Y+Z=0X+Y+Z
162 9 adantr φ¬X+Y+Z=0E+
163 43 adantr φ¬X+Y+Z=00X+Y+Z
164 neqne ¬X+Y+Z=0X+Y+Z0
165 164 adantl φ¬X+Y+Z=0X+Y+Z0
166 161 163 165 ne0gt0d φ¬X+Y+Z=00<X+Y+Z
167 161 166 elrpd φ¬X+Y+Z=0X+Y+Z+
168 167 162 rpdivcld φ¬X+Y+Z=0X+Y+ZE+
169 1rp 1+
170 169 a1i φ¬X+Y+Z=01+
171 168 170 rpaddcld φ¬X+Y+Z=0X+Y+ZE+1+
172 124 adantr φ¬X+Y+Z=0X+Y+ZE<X+Y+ZE+1
173 161 162 171 172 ltdiv23d φ¬X+Y+Z=0X+Y+ZX+Y+ZE+1<E
174 160 173 pm2.61dan φX+Y+ZX+Y+ZE+1<E
175 136 174 eqbrtrid φA+C+IFGdxX+Y+ZE+1<E
176 92 127 32 135 175 lelttrd φA+C+IFGdxR<E
177 89 92 32 123 176 lelttrd φAB-CD-IFGdxR<E
178 87 177 eqbrtrd φABR-CDR-IFGRdx<E