Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem33.1 |
|
2 |
|
fourierdlem33.2 |
|
3 |
|
fourierdlem33.3 |
|
4 |
|
fourierdlem33.4 |
|
5 |
|
fourierdlem33.5 |
|
6 |
|
fourierdlem33.6 |
|
7 |
|
fourierdlem33.7 |
|
8 |
|
fourierdlem33.8 |
|
9 |
|
fourierdlem33.ss |
|
10 |
|
fourierdlem33.y |
|
11 |
|
fourierdlem33.10 |
|
12 |
5
|
adantr |
|
13 |
|
iftrue |
|
14 |
10 13
|
eqtr2id |
|
15 |
14
|
adantl |
|
16 |
|
oveq2 |
|
17 |
16
|
adantl |
|
18 |
|
cncff |
|
19 |
4 18
|
syl |
|
20 |
19
|
adantr |
|
21 |
9
|
adantr |
|
22 |
|
ioosscn |
|
23 |
22
|
a1i |
|
24 |
|
eqid |
|
25 |
7
|
leidd |
|
26 |
6
|
rexrd |
|
27 |
|
elioc2 |
|
28 |
26 7 27
|
syl2anc |
|
29 |
7 8 25 28
|
mpbir3and |
|
30 |
29
|
adantr |
|
31 |
|
eqcom |
|
32 |
31
|
biimpi |
|
33 |
32
|
adantl |
|
34 |
24
|
cnfldtop |
|
35 |
1
|
rexrd |
|
36 |
2
|
rexrd |
|
37 |
|
ioounsn |
|
38 |
35 36 3 37
|
syl3anc |
|
39 |
|
ovex |
|
40 |
39
|
a1i |
|
41 |
38 40
|
eqeltrd |
|
42 |
|
resttop |
|
43 |
34 41 42
|
sylancr |
|
44 |
11 43
|
eqeltrid |
|
45 |
44
|
adantr |
|
46 |
|
oveq2 |
|
47 |
46
|
adantl |
|
48 |
26
|
adantr |
|
49 |
|
pnfxr |
|
50 |
49
|
a1i |
|
51 |
|
simpr |
|
52 |
2
|
adantr |
|
53 |
|
elioc2 |
|
54 |
48 52 53
|
syl2anc |
|
55 |
51 54
|
mpbid |
|
56 |
55
|
simp1d |
|
57 |
55
|
simp2d |
|
58 |
56
|
ltpnfd |
|
59 |
48 50 56 57 58
|
eliood |
|
60 |
1
|
adantr |
|
61 |
6
|
adantr |
|
62 |
1 2 6 7 8 9
|
fourierdlem10 |
|
63 |
62
|
simpld |
|
64 |
63
|
adantr |
|
65 |
60 61 56 64 57
|
lelttrd |
|
66 |
55
|
simp3d |
|
67 |
35
|
adantr |
|
68 |
|
elioc2 |
|
69 |
67 52 68
|
syl2anc |
|
70 |
56 65 66 69
|
mpbir3and |
|
71 |
59 70
|
elind |
|
72 |
|
elinel1 |
|
73 |
|
elioore |
|
74 |
72 73
|
syl |
|
75 |
74
|
adantl |
|
76 |
26
|
adantr |
|
77 |
49
|
a1i |
|
78 |
72
|
adantl |
|
79 |
|
ioogtlb |
|
80 |
76 77 78 79
|
syl3anc |
|
81 |
|
elinel2 |
|
82 |
81
|
adantl |
|
83 |
35
|
adantr |
|
84 |
2
|
adantr |
|
85 |
83 84 68
|
syl2anc |
|
86 |
82 85
|
mpbid |
|
87 |
86
|
simp3d |
|
88 |
76 84 53
|
syl2anc |
|
89 |
75 80 87 88
|
mpbir3and |
|
90 |
71 89
|
impbida |
|
91 |
90
|
eqrdv |
|
92 |
|
retop |
|
93 |
92
|
a1i |
|
94 |
|
iooretop |
|
95 |
94
|
a1i |
|
96 |
|
elrestr |
|
97 |
93 40 95 96
|
syl3anc |
|
98 |
91 97
|
eqeltrd |
|
99 |
98
|
adantr |
|
100 |
47 99
|
eqeltrd |
|
101 |
11
|
a1i |
|
102 |
38
|
oveq2d |
|
103 |
34
|
a1i |
|
104 |
|
iocssre |
|
105 |
35 2 104
|
syl2anc |
|
106 |
|
reex |
|
107 |
106
|
a1i |
|
108 |
|
restabs |
|
109 |
103 105 107 108
|
syl3anc |
|
110 |
24
|
tgioo2 |
|
111 |
110
|
eqcomi |
|
112 |
111
|
oveq1i |
|
113 |
109 112
|
eqtr3di |
|
114 |
101 102 113
|
3eqtrrd |
|
115 |
114
|
adantr |
|
116 |
100 115
|
eleqtrd |
|
117 |
|
isopn3i |
|
118 |
45 116 117
|
syl2anc |
|
119 |
30 33 118
|
3eltr4d |
|
120 |
|
sneq |
|
121 |
120
|
eqcomd |
|
122 |
121
|
uneq2d |
|
123 |
122
|
adantl |
|
124 |
7
|
rexrd |
|
125 |
|
ioounsn |
|
126 |
26 124 8 125
|
syl3anc |
|
127 |
126
|
adantr |
|
128 |
123 127
|
eqtr2d |
|
129 |
128
|
fveq2d |
|
130 |
119 129
|
eleqtrd |
|
131 |
20 21 23 24 11 130
|
limcres |
|
132 |
17 131
|
eqtr2d |
|
133 |
12 15 132
|
3eltr3d |
|
134 |
|
limcresi |
|
135 |
|
iffalse |
|
136 |
10 135
|
eqtrid |
|
137 |
136
|
adantl |
|
138 |
|
ssid |
|
139 |
138
|
a1i |
|
140 |
|
eqid |
|
141 |
|
unicntop |
|
142 |
141
|
restid |
|
143 |
34 142
|
ax-mp |
|
144 |
143
|
eqcomi |
|
145 |
24 140 144
|
cncfcn |
|
146 |
22 139 145
|
sylancr |
|
147 |
4 146
|
eleqtrd |
|
148 |
24
|
cnfldtopon |
|
149 |
22
|
a1i |
|
150 |
|
resttopon |
|
151 |
148 149 150
|
sylancr |
|
152 |
148
|
a1i |
|
153 |
|
cncnp |
|
154 |
151 152 153
|
syl2anc |
|
155 |
147 154
|
mpbid |
|
156 |
155
|
simprd |
|
157 |
156
|
adantr |
|
158 |
35
|
adantr |
|
159 |
36
|
adantr |
|
160 |
7
|
adantr |
|
161 |
1 6 7 63 8
|
lelttrd |
|
162 |
161
|
adantr |
|
163 |
2
|
adantr |
|
164 |
62
|
simprd |
|
165 |
164
|
adantr |
|
166 |
|
neqne |
|
167 |
166
|
necomd |
|
168 |
167
|
adantl |
|
169 |
160 163 165 168
|
leneltd |
|
170 |
158 159 160 162 169
|
eliood |
|
171 |
|
fveq2 |
|
172 |
171
|
eleq2d |
|
173 |
172
|
rspccva |
|
174 |
157 170 173
|
syl2anc |
|
175 |
24 140
|
cnplimc |
|
176 |
22 170 175
|
sylancr |
|
177 |
174 176
|
mpbid |
|
178 |
177
|
simprd |
|
179 |
137 178
|
eqeltrd |
|
180 |
134 179
|
sselid |
|
181 |
133 180
|
pm2.61dan |
|