Metamath Proof Explorer


Theorem fourierdlem33

Description: Limit of a continuous function on an open subinterval. Upper bound version. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem33.1 φ A
fourierdlem33.2 φ B
fourierdlem33.3 φ A < B
fourierdlem33.4 φ F : A B cn
fourierdlem33.5 φ L F lim B
fourierdlem33.6 φ C
fourierdlem33.7 φ D
fourierdlem33.8 φ C < D
fourierdlem33.ss φ C D A B
fourierdlem33.y Y = if D = B L F D
fourierdlem33.10 J = TopOpen fld 𝑡 A B B
Assertion fourierdlem33 φ Y F C D lim D

Proof

Step Hyp Ref Expression
1 fourierdlem33.1 φ A
2 fourierdlem33.2 φ B
3 fourierdlem33.3 φ A < B
4 fourierdlem33.4 φ F : A B cn
5 fourierdlem33.5 φ L F lim B
6 fourierdlem33.6 φ C
7 fourierdlem33.7 φ D
8 fourierdlem33.8 φ C < D
9 fourierdlem33.ss φ C D A B
10 fourierdlem33.y Y = if D = B L F D
11 fourierdlem33.10 J = TopOpen fld 𝑡 A B B
12 5 adantr φ D = B L F lim B
13 iftrue D = B if D = B L F D = L
14 10 13 syl5req D = B L = Y
15 14 adantl φ D = B L = Y
16 oveq2 D = B F C D lim D = F C D lim B
17 16 adantl φ D = B F C D lim D = F C D lim B
18 cncff F : A B cn F : A B
19 4 18 syl φ F : A B
20 19 adantr φ D = B F : A B
21 9 adantr φ D = B C D A B
22 ioosscn A B
23 22 a1i φ D = B A B
24 eqid TopOpen fld = TopOpen fld
25 7 leidd φ D D
26 6 rexrd φ C *
27 elioc2 C * D D C D D C < D D D
28 26 7 27 syl2anc φ D C D D C < D D D
29 7 8 25 28 mpbir3and φ D C D
30 29 adantr φ D = B D C D
31 eqcom D = B B = D
32 31 biimpi D = B B = D
33 32 adantl φ D = B B = D
34 24 cnfldtop TopOpen fld Top
35 1 rexrd φ A *
36 2 rexrd φ B *
37 ioounsn A * B * A < B A B B = A B
38 35 36 3 37 syl3anc φ A B B = A B
39 ovex A B V
40 39 a1i φ A B V
41 38 40 eqeltrd φ A B B V
42 resttop TopOpen fld Top A B B V TopOpen fld 𝑡 A B B Top
43 34 41 42 sylancr φ TopOpen fld 𝑡 A B B Top
44 11 43 eqeltrid φ J Top
45 44 adantr φ D = B J Top
46 oveq2 D = B C D = C B
47 46 adantl φ D = B C D = C B
48 26 adantr φ x C B C *
49 pnfxr +∞ *
50 49 a1i φ x C B +∞ *
51 simpr φ x C B x C B
52 2 adantr φ x C B B
53 elioc2 C * B x C B x C < x x B
54 48 52 53 syl2anc φ x C B x C B x C < x x B
55 51 54 mpbid φ x C B x C < x x B
56 55 simp1d φ x C B x
57 55 simp2d φ x C B C < x
58 56 ltpnfd φ x C B x < +∞
59 48 50 56 57 58 eliood φ x C B x C +∞
60 1 adantr φ x C B A
61 6 adantr φ x C B C
62 1 2 6 7 8 9 fourierdlem10 φ A C D B
63 62 simpld φ A C
64 63 adantr φ x C B A C
65 60 61 56 64 57 lelttrd φ x C B A < x
66 55 simp3d φ x C B x B
67 35 adantr φ x C B A *
68 elioc2 A * B x A B x A < x x B
69 67 52 68 syl2anc φ x C B x A B x A < x x B
70 56 65 66 69 mpbir3and φ x C B x A B
71 59 70 elind φ x C B x C +∞ A B
72 elinel1 x C +∞ A B x C +∞
73 elioore x C +∞ x
74 72 73 syl x C +∞ A B x
75 74 adantl φ x C +∞ A B x
76 26 adantr φ x C +∞ A B C *
77 49 a1i φ x C +∞ A B +∞ *
78 72 adantl φ x C +∞ A B x C +∞
79 ioogtlb C * +∞ * x C +∞ C < x
80 76 77 78 79 syl3anc φ x C +∞ A B C < x
81 elinel2 x C +∞ A B x A B
82 81 adantl φ x C +∞ A B x A B
83 35 adantr φ x C +∞ A B A *
84 2 adantr φ x C +∞ A B B
85 83 84 68 syl2anc φ x C +∞ A B x A B x A < x x B
86 82 85 mpbid φ x C +∞ A B x A < x x B
87 86 simp3d φ x C +∞ A B x B
88 76 84 53 syl2anc φ x C +∞ A B x C B x C < x x B
89 75 80 87 88 mpbir3and φ x C +∞ A B x C B
90 71 89 impbida φ x C B x C +∞ A B
91 90 eqrdv φ C B = C +∞ A B
92 retop topGen ran . Top
93 92 a1i φ topGen ran . Top
94 iooretop C +∞ topGen ran .
95 94 a1i φ C +∞ topGen ran .
96 elrestr topGen ran . Top A B V C +∞ topGen ran . C +∞ A B topGen ran . 𝑡 A B
97 93 40 95 96 syl3anc φ C +∞ A B topGen ran . 𝑡 A B
98 91 97 eqeltrd φ C B topGen ran . 𝑡 A B
99 98 adantr φ D = B C B topGen ran . 𝑡 A B
100 47 99 eqeltrd φ D = B C D topGen ran . 𝑡 A B
101 11 a1i φ J = TopOpen fld 𝑡 A B B
102 38 oveq2d φ TopOpen fld 𝑡 A B B = TopOpen fld 𝑡 A B
103 24 tgioo2 topGen ran . = TopOpen fld 𝑡
104 103 eqcomi TopOpen fld 𝑡 = topGen ran .
105 104 oveq1i TopOpen fld 𝑡 𝑡 A B = topGen ran . 𝑡 A B
106 34 a1i φ TopOpen fld Top
107 iocssre A * B A B
108 35 2 107 syl2anc φ A B
109 reex V
110 109 a1i φ V
111 restabs TopOpen fld Top A B V TopOpen fld 𝑡 𝑡 A B = TopOpen fld 𝑡 A B
112 106 108 110 111 syl3anc φ TopOpen fld 𝑡 𝑡 A B = TopOpen fld 𝑡 A B
113 105 112 syl5reqr φ TopOpen fld 𝑡 A B = topGen ran . 𝑡 A B
114 101 102 113 3eqtrrd φ topGen ran . 𝑡 A B = J
115 114 adantr φ D = B topGen ran . 𝑡 A B = J
116 100 115 eleqtrd φ D = B C D J
117 isopn3i J Top C D J int J C D = C D
118 45 116 117 syl2anc φ D = B int J C D = C D
119 30 33 118 3eltr4d φ D = B B int J C D
120 sneq D = B D = B
121 120 eqcomd D = B B = D
122 121 uneq2d D = B C D B = C D D
123 122 adantl φ D = B C D B = C D D
124 7 rexrd φ D *
125 ioounsn C * D * C < D C D D = C D
126 26 124 8 125 syl3anc φ C D D = C D
127 126 adantr φ D = B C D D = C D
128 123 127 eqtr2d φ D = B C D = C D B
129 128 fveq2d φ D = B int J C D = int J C D B
130 119 129 eleqtrd φ D = B B int J C D B
131 20 21 23 24 11 130 limcres φ D = B F C D lim B = F lim B
132 17 131 eqtr2d φ D = B F lim B = F C D lim D
133 12 15 132 3eltr3d φ D = B Y F C D lim D
134 limcresi F lim D F C D lim D
135 iffalse ¬ D = B if D = B L F D = F D
136 10 135 syl5eq ¬ D = B Y = F D
137 136 adantl φ ¬ D = B Y = F D
138 ssid
139 138 a1i φ
140 eqid TopOpen fld 𝑡 A B = TopOpen fld 𝑡 A B
141 unicntop = TopOpen fld
142 141 restid TopOpen fld Top TopOpen fld 𝑡 = TopOpen fld
143 34 142 ax-mp TopOpen fld 𝑡 = TopOpen fld
144 143 eqcomi TopOpen fld = TopOpen fld 𝑡
145 24 140 144 cncfcn A B A B cn = TopOpen fld 𝑡 A B Cn TopOpen fld
146 22 139 145 sylancr φ A B cn = TopOpen fld 𝑡 A B Cn TopOpen fld
147 4 146 eleqtrd φ F TopOpen fld 𝑡 A B Cn TopOpen fld
148 24 cnfldtopon TopOpen fld TopOn
149 22 a1i φ A B
150 resttopon TopOpen fld TopOn A B TopOpen fld 𝑡 A B TopOn A B
151 148 149 150 sylancr φ TopOpen fld 𝑡 A B TopOn A B
152 148 a1i φ TopOpen fld TopOn
153 cncnp TopOpen fld 𝑡 A B TopOn A B TopOpen fld TopOn F TopOpen fld 𝑡 A B Cn TopOpen fld F : A B x A B F TopOpen fld 𝑡 A B CnP TopOpen fld x
154 151 152 153 syl2anc φ F TopOpen fld 𝑡 A B Cn TopOpen fld F : A B x A B F TopOpen fld 𝑡 A B CnP TopOpen fld x
155 147 154 mpbid φ F : A B x A B F TopOpen fld 𝑡 A B CnP TopOpen fld x
156 155 simprd φ x A B F TopOpen fld 𝑡 A B CnP TopOpen fld x
157 156 adantr φ ¬ D = B x A B F TopOpen fld 𝑡 A B CnP TopOpen fld x
158 35 adantr φ ¬ D = B A *
159 36 adantr φ ¬ D = B B *
160 7 adantr φ ¬ D = B D
161 1 6 7 63 8 lelttrd φ A < D
162 161 adantr φ ¬ D = B A < D
163 2 adantr φ ¬ D = B B
164 62 simprd φ D B
165 164 adantr φ ¬ D = B D B
166 neqne ¬ D = B D B
167 166 necomd ¬ D = B B D
168 167 adantl φ ¬ D = B B D
169 160 163 165 168 leneltd φ ¬ D = B D < B
170 158 159 160 162 169 eliood φ ¬ D = B D A B
171 fveq2 x = D TopOpen fld 𝑡 A B CnP TopOpen fld x = TopOpen fld 𝑡 A B CnP TopOpen fld D
172 171 eleq2d x = D F TopOpen fld 𝑡 A B CnP TopOpen fld x F TopOpen fld 𝑡 A B CnP TopOpen fld D
173 172 rspccva x A B F TopOpen fld 𝑡 A B CnP TopOpen fld x D A B F TopOpen fld 𝑡 A B CnP TopOpen fld D
174 157 170 173 syl2anc φ ¬ D = B F TopOpen fld 𝑡 A B CnP TopOpen fld D
175 24 140 cnplimc A B D A B F TopOpen fld 𝑡 A B CnP TopOpen fld D F : A B F D F lim D
176 22 170 175 sylancr φ ¬ D = B F TopOpen fld 𝑡 A B CnP TopOpen fld D F : A B F D F lim D
177 174 176 mpbid φ ¬ D = B F : A B F D F lim D
178 177 simprd φ ¬ D = B F D F lim D
179 137 178 eqeltrd φ ¬ D = B Y F lim D
180 134 179 sseldi φ ¬ D = B Y F C D lim D
181 133 180 pm2.61dan φ Y F C D lim D