Metamath Proof Explorer


Theorem frlmup1

Description: Any assignment of unit vectors to target vectors can be extended (uniquely) to a homomorphism from a free module to an arbitrary other module on the same base ring. (Contributed by Stefan O'Rear, 7-Feb-2015) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Hypotheses frlmup.f F=RfreeLModI
frlmup.b B=BaseF
frlmup.c C=BaseT
frlmup.v ·˙=T
frlmup.e E=xBTx·˙fA
frlmup.t φTLMod
frlmup.i φIX
frlmup.r φR=ScalarT
frlmup.a φA:IC
Assertion frlmup1 φEFLMHomT

Proof

Step Hyp Ref Expression
1 frlmup.f F=RfreeLModI
2 frlmup.b B=BaseF
3 frlmup.c C=BaseT
4 frlmup.v ·˙=T
5 frlmup.e E=xBTx·˙fA
6 frlmup.t φTLMod
7 frlmup.i φIX
8 frlmup.r φR=ScalarT
9 frlmup.a φA:IC
10 eqid F=F
11 eqid ScalarF=ScalarF
12 eqid ScalarT=ScalarT
13 eqid BaseScalarF=BaseScalarF
14 12 lmodring TLModScalarTRing
15 6 14 syl φScalarTRing
16 8 15 eqeltrd φRRing
17 1 frlmlmod RRingIXFLMod
18 16 7 17 syl2anc φFLMod
19 1 frlmsca RRingIXR=ScalarF
20 16 7 19 syl2anc φR=ScalarF
21 8 20 eqtr3d φScalarT=ScalarF
22 eqid +F=+F
23 eqid +T=+T
24 lmodgrp FLModFGrp
25 18 24 syl φFGrp
26 lmodgrp TLModTGrp
27 6 26 syl φTGrp
28 eleq1w z=xzBxB
29 28 anbi2d z=xφzBφxB
30 oveq1 z=xz·˙fA=x·˙fA
31 30 oveq2d z=xTz·˙fA=Tx·˙fA
32 31 eleq1d z=xTz·˙fACTx·˙fAC
33 29 32 imbi12d z=xφzBTz·˙fACφxBTx·˙fAC
34 eqid 0T=0T
35 lmodcmn TLModTCMnd
36 6 35 syl φTCMnd
37 36 adantr φzBTCMnd
38 7 adantr φzBIX
39 6 ad2antrr φzBxBaseRyCTLMod
40 simprl φzBxBaseRyCxBaseR
41 8 fveq2d φBaseR=BaseScalarT
42 41 ad2antrr φzBxBaseRyCBaseR=BaseScalarT
43 40 42 eleqtrd φzBxBaseRyCxBaseScalarT
44 simprr φzBxBaseRyCyC
45 eqid BaseScalarT=BaseScalarT
46 3 12 4 45 lmodvscl TLModxBaseScalarTyCx·˙yC
47 39 43 44 46 syl3anc φzBxBaseRyCx·˙yC
48 eqid BaseR=BaseR
49 1 48 2 frlmbasf IXzBz:IBaseR
50 7 49 sylan φzBz:IBaseR
51 9 adantr φzBA:IC
52 inidm II=I
53 47 50 51 38 38 52 off φzBz·˙fA:IC
54 ovexd φzBz·˙fAV
55 53 ffund φzBFunz·˙fA
56 fvexd φzB0TV
57 eqid 0R=0R
58 1 57 2 frlmbasfsupp IXzBfinSupp0Rz
59 7 58 sylan φzBfinSupp0Rz
60 8 fveq2d φ0R=0ScalarT
61 60 eqcomd φ0ScalarT=0R
62 61 breq2d φfinSupp0ScalarTzfinSupp0Rz
63 62 adantr φzBfinSupp0ScalarTzfinSupp0Rz
64 59 63 mpbird φzBfinSupp0ScalarTz
65 64 fsuppimpd φzBzsupp0ScalarTFin
66 ssidd φzBzsupp0ScalarTzsupp0ScalarT
67 6 ad2antrr φzBwCTLMod
68 eqid 0ScalarT=0ScalarT
69 3 12 4 68 34 lmod0vs TLModwC0ScalarT·˙w=0T
70 67 69 sylancom φzBwC0ScalarT·˙w=0T
71 fvexd φzB0ScalarTV
72 66 70 50 51 38 71 suppssof1 φzBz·˙fAsupp0Tzsupp0ScalarT
73 suppssfifsupp z·˙fAVFunz·˙fA0TVzsupp0ScalarTFinz·˙fAsupp0Tzsupp0ScalarTfinSupp0Tz·˙fA
74 54 55 56 65 72 73 syl32anc φzBfinSupp0Tz·˙fA
75 3 34 37 38 53 74 gsumcl φzBTz·˙fAC
76 33 75 chvarvv φxBTx·˙fAC
77 76 5 fmptd φE:BC
78 36 adantr φyBzBTCMnd
79 7 adantr φyBzBIX
80 eleq1w z=yzByB
81 80 anbi2d z=yφzBφyB
82 oveq1 z=yz·˙fA=y·˙fA
83 82 feq1d z=yz·˙fA:ICy·˙fA:IC
84 81 83 imbi12d z=yφzBz·˙fA:ICφyBy·˙fA:IC
85 84 53 chvarvv φyBy·˙fA:IC
86 85 adantrr φyBzBy·˙fA:IC
87 53 adantrl φyBzBz·˙fA:IC
88 82 breq1d z=yfinSupp0Tz·˙fAfinSupp0Ty·˙fA
89 81 88 imbi12d z=yφzBfinSupp0Tz·˙fAφyBfinSupp0Ty·˙fA
90 89 74 chvarvv φyBfinSupp0Ty·˙fA
91 90 adantrr φyBzBfinSupp0Ty·˙fA
92 74 adantrl φyBzBfinSupp0Tz·˙fA
93 3 34 23 78 79 86 87 91 92 gsumadd φyBzBTy·˙fA+Tfz·˙fA=Ty·˙fA+TTz·˙fA
94 2 22 lmodvacl FLModyBzBy+FzB
95 94 3expb FLModyBzBy+FzB
96 18 95 sylan φyBzBy+FzB
97 oveq1 x=y+Fzx·˙fA=y+Fz·˙fA
98 97 oveq2d x=y+FzTx·˙fA=Ty+Fz·˙fA
99 ovex Ty+Fz·˙fAV
100 98 5 99 fvmpt y+FzBEy+Fz=Ty+Fz·˙fA
101 96 100 syl φyBzBEy+Fz=Ty+Fz·˙fA
102 16 adantr φyBzBRRing
103 simprl φyBzByB
104 simprr φyBzBzB
105 eqid +R=+R
106 1 2 102 79 103 104 105 22 frlmplusgval φyBzBy+Fz=y+Rfz
107 106 oveq1d φyBzBy+Fz·˙fA=y+Rfz·˙fA
108 1 48 2 frlmbasf IXyBy:IBaseR
109 7 108 sylan φyBy:IBaseR
110 109 adantrr φyBzBy:IBaseR
111 110 ffnd φyBzByFnI
112 50 adantrl φyBzBz:IBaseR
113 112 ffnd φyBzBzFnI
114 111 113 79 79 52 offn φyBzBy+RfzFnI
115 9 ffnd φAFnI
116 115 adantr φyBzBAFnI
117 114 116 79 79 52 offn φyBzBy+Rfz·˙fAFnI
118 85 ffnd φyBy·˙fAFnI
119 118 adantrr φyBzBy·˙fAFnI
120 53 ffnd φzBz·˙fAFnI
121 120 adantrl φyBzBz·˙fAFnI
122 119 121 79 79 52 offn φyBzBy·˙fA+Tfz·˙fAFnI
123 8 fveq2d φ+R=+ScalarT
124 123 ad2antrr φyBzBxI+R=+ScalarT
125 124 oveqd φyBzBxIyx+Rzx=yx+ScalarTzx
126 125 oveq1d φyBzBxIyx+Rzx·˙Ax=yx+ScalarTzx·˙Ax
127 6 ad2antrr φyBzBxITLMod
128 110 ffvelcdmda φyBzBxIyxBaseR
129 41 ad2antrr φyBzBxIBaseR=BaseScalarT
130 128 129 eleqtrd φyBzBxIyxBaseScalarT
131 112 ffvelcdmda φyBzBxIzxBaseR
132 131 129 eleqtrd φyBzBxIzxBaseScalarT
133 9 adantr φyBzBA:IC
134 133 ffvelcdmda φyBzBxIAxC
135 eqid +ScalarT=+ScalarT
136 3 23 12 4 45 135 lmodvsdir TLModyxBaseScalarTzxBaseScalarTAxCyx+ScalarTzx·˙Ax=yx·˙Ax+Tzx·˙Ax
137 127 130 132 134 136 syl13anc φyBzBxIyx+ScalarTzx·˙Ax=yx·˙Ax+Tzx·˙Ax
138 126 137 eqtrd φyBzBxIyx+Rzx·˙Ax=yx·˙Ax+Tzx·˙Ax
139 111 adantr φyBzBxIyFnI
140 113 adantr φyBzBxIzFnI
141 7 ad2antrr φyBzBxIIX
142 simpr φyBzBxIxI
143 fnfvof yFnIzFnIIXxIy+Rfzx=yx+Rzx
144 139 140 141 142 143 syl22anc φyBzBxIy+Rfzx=yx+Rzx
145 144 oveq1d φyBzBxIy+Rfzx·˙Ax=yx+Rzx·˙Ax
146 115 ad2antrr φyBzBxIAFnI
147 fnfvof yFnIAFnIIXxIy·˙fAx=yx·˙Ax
148 139 146 141 142 147 syl22anc φyBzBxIy·˙fAx=yx·˙Ax
149 fnfvof zFnIAFnIIXxIz·˙fAx=zx·˙Ax
150 140 146 141 142 149 syl22anc φyBzBxIz·˙fAx=zx·˙Ax
151 148 150 oveq12d φyBzBxIy·˙fAx+Tz·˙fAx=yx·˙Ax+Tzx·˙Ax
152 138 145 151 3eqtr4d φyBzBxIy+Rfzx·˙Ax=y·˙fAx+Tz·˙fAx
153 114 adantr φyBzBxIy+RfzFnI
154 fnfvof y+RfzFnIAFnIIXxIy+Rfz·˙fAx=y+Rfzx·˙Ax
155 153 146 141 142 154 syl22anc φyBzBxIy+Rfz·˙fAx=y+Rfzx·˙Ax
156 119 adantr φyBzBxIy·˙fAFnI
157 121 adantr φyBzBxIz·˙fAFnI
158 fnfvof y·˙fAFnIz·˙fAFnIIXxIy·˙fA+Tfz·˙fAx=y·˙fAx+Tz·˙fAx
159 156 157 141 142 158 syl22anc φyBzBxIy·˙fA+Tfz·˙fAx=y·˙fAx+Tz·˙fAx
160 152 155 159 3eqtr4d φyBzBxIy+Rfz·˙fAx=y·˙fA+Tfz·˙fAx
161 117 122 160 eqfnfvd φyBzBy+Rfz·˙fA=y·˙fA+Tfz·˙fA
162 107 161 eqtrd φyBzBy+Fz·˙fA=y·˙fA+Tfz·˙fA
163 162 oveq2d φyBzBTy+Fz·˙fA=Ty·˙fA+Tfz·˙fA
164 101 163 eqtrd φyBzBEy+Fz=Ty·˙fA+Tfz·˙fA
165 oveq1 x=yx·˙fA=y·˙fA
166 165 oveq2d x=yTx·˙fA=Ty·˙fA
167 ovex Ty·˙fAV
168 166 5 167 fvmpt yBEy=Ty·˙fA
169 168 ad2antrl φyBzBEy=Ty·˙fA
170 oveq1 x=zx·˙fA=z·˙fA
171 170 oveq2d x=zTx·˙fA=Tz·˙fA
172 ovex Tz·˙fAV
173 171 5 172 fvmpt zBEz=Tz·˙fA
174 173 ad2antll φyBzBEz=Tz·˙fA
175 169 174 oveq12d φyBzBEy+TEz=Ty·˙fA+TTz·˙fA
176 93 164 175 3eqtr4d φyBzBEy+Fz=Ey+TEz
177 2 3 22 23 25 27 77 176 isghmd φEFGrpHomT
178 6 adantr φyBaseScalarFzBTLMod
179 7 adantr φyBaseScalarFzBIX
180 21 fveq2d φBaseScalarT=BaseScalarF
181 180 eleq2d φyBaseScalarTyBaseScalarF
182 181 biimpar φyBaseScalarFyBaseScalarT
183 182 adantrr φyBaseScalarFzByBaseScalarT
184 53 adantrl φyBaseScalarFzBz·˙fA:IC
185 184 ffvelcdmda φyBaseScalarFzBxIz·˙fAxC
186 53 feqmptd φzBz·˙fA=xIz·˙fAx
187 186 74 eqbrtrrd φzBfinSupp0TxIz·˙fAx
188 187 adantrl φyBaseScalarFzBfinSupp0TxIz·˙fAx
189 3 12 45 34 23 4 178 179 183 185 188 gsumvsmul φyBaseScalarFzBTxIy·˙z·˙fAx=y·˙TxIz·˙fAx
190 18 adantr φyBaseScalarFzBFLMod
191 simprl φyBaseScalarFzByBaseScalarF
192 simprr φyBaseScalarFzBzB
193 2 11 10 13 lmodvscl FLModyBaseScalarFzByFzB
194 190 191 192 193 syl3anc φyBaseScalarFzByFzB
195 1 48 2 frlmbasf IXyFzByFz:IBaseR
196 179 194 195 syl2anc φyBaseScalarFzByFz:IBaseR
197 196 ffnd φyBaseScalarFzByFzFnI
198 115 adantr φyBaseScalarFzBAFnI
199 197 198 179 179 52 offn φyBaseScalarFzByFz·˙fAFnI
200 dffn2 yFz·˙fAFnIyFz·˙fA:IV
201 199 200 sylib φyBaseScalarFzByFz·˙fA:IV
202 201 feqmptd φyBaseScalarFzByFz·˙fA=xIyFz·˙fAx
203 8 fveq2d φR=ScalarT
204 203 ad2antrr φyBaseScalarFzBxIR=ScalarT
205 204 oveqd φyBaseScalarFzBxIyRzx=yScalarTzx
206 205 oveq1d φyBaseScalarFzBxIyRzx·˙Ax=yScalarTzx·˙Ax
207 6 ad2antrr φyBaseScalarFzBxITLMod
208 simplrl φyBaseScalarFzBxIyBaseScalarF
209 180 ad2antrr φyBaseScalarFzBxIBaseScalarT=BaseScalarF
210 208 209 eleqtrrd φyBaseScalarFzBxIyBaseScalarT
211 50 ffvelcdmda φzBxIzxBaseR
212 41 ad2antrr φzBxIBaseR=BaseScalarT
213 211 212 eleqtrd φzBxIzxBaseScalarT
214 213 adantlrl φyBaseScalarFzBxIzxBaseScalarT
215 9 ffvelcdmda φxIAxC
216 215 adantlr φyBaseScalarFzBxIAxC
217 eqid ScalarT=ScalarT
218 3 12 4 45 217 lmodvsass TLModyBaseScalarTzxBaseScalarTAxCyScalarTzx·˙Ax=y·˙zx·˙Ax
219 207 210 214 216 218 syl13anc φyBaseScalarFzBxIyScalarTzx·˙Ax=y·˙zx·˙Ax
220 206 219 eqtrd φyBaseScalarFzBxIyRzx·˙Ax=y·˙zx·˙Ax
221 197 adantr φyBaseScalarFzBxIyFzFnI
222 115 ad2antrr φyBaseScalarFzBxIAFnI
223 7 ad2antrr φyBaseScalarFzBxIIX
224 simpr φyBaseScalarFzBxIxI
225 fnfvof yFzFnIAFnIIXxIyFz·˙fAx=yFzx·˙Ax
226 221 222 223 224 225 syl22anc φyBaseScalarFzBxIyFz·˙fAx=yFzx·˙Ax
227 20 fveq2d φBaseR=BaseScalarF
228 227 ad2antrr φyBaseScalarFzBxIBaseR=BaseScalarF
229 208 228 eleqtrrd φyBaseScalarFzBxIyBaseR
230 simplrr φyBaseScalarFzBxIzB
231 eqid R=R
232 1 2 48 223 229 230 224 10 231 frlmvscaval φyBaseScalarFzBxIyFzx=yRzx
233 232 oveq1d φyBaseScalarFzBxIyFzx·˙Ax=yRzx·˙Ax
234 226 233 eqtrd φyBaseScalarFzBxIyFz·˙fAx=yRzx·˙Ax
235 50 ffnd φzBzFnI
236 235 adantrl φyBaseScalarFzBzFnI
237 236 adantr φyBaseScalarFzBxIzFnI
238 237 222 223 224 149 syl22anc φyBaseScalarFzBxIz·˙fAx=zx·˙Ax
239 238 oveq2d φyBaseScalarFzBxIy·˙z·˙fAx=y·˙zx·˙Ax
240 220 234 239 3eqtr4d φyBaseScalarFzBxIyFz·˙fAx=y·˙z·˙fAx
241 240 mpteq2dva φyBaseScalarFzBxIyFz·˙fAx=xIy·˙z·˙fAx
242 202 241 eqtrd φyBaseScalarFzByFz·˙fA=xIy·˙z·˙fAx
243 242 oveq2d φyBaseScalarFzBTyFz·˙fA=TxIy·˙z·˙fAx
244 184 feqmptd φyBaseScalarFzBz·˙fA=xIz·˙fAx
245 244 oveq2d φyBaseScalarFzBTz·˙fA=TxIz·˙fAx
246 245 oveq2d φyBaseScalarFzBy·˙Tz·˙fA=y·˙TxIz·˙fAx
247 189 243 246 3eqtr4d φyBaseScalarFzBTyFz·˙fA=y·˙Tz·˙fA
248 oveq1 x=yFzx·˙fA=yFz·˙fA
249 248 oveq2d x=yFzTx·˙fA=TyFz·˙fA
250 ovex TyFz·˙fAV
251 249 5 250 fvmpt yFzBEyFz=TyFz·˙fA
252 194 251 syl φyBaseScalarFzBEyFz=TyFz·˙fA
253 173 oveq2d zBy·˙Ez=y·˙Tz·˙fA
254 253 ad2antll φyBaseScalarFzBy·˙Ez=y·˙Tz·˙fA
255 247 252 254 3eqtr4d φyBaseScalarFzBEyFz=y·˙Ez
256 2 10 4 11 12 13 18 6 21 177 255 islmhmd φEFLMHomT