Metamath Proof Explorer


Theorem geomulcvg

Description: The geometric series converges even if it is multiplied by k to result in the larger series k x. A ^ k . (Contributed by Mario Carneiro, 27-Mar-2015)

Ref Expression
Hypothesis geomulcvg.1 F = k 0 k A k
Assertion geomulcvg A A < 1 seq 0 + F dom

Proof

Step Hyp Ref Expression
1 geomulcvg.1 F = k 0 k A k
2 elnn0 k 0 k k = 0
3 simpr A A < 1 A = 0 A = 0
4 3 oveq1d A A < 1 A = 0 A k = 0 k
5 0exp k 0 k = 0
6 4 5 sylan9eq A A < 1 A = 0 k A k = 0
7 6 oveq2d A A < 1 A = 0 k k A k = k 0
8 nncn k k
9 8 adantl A A < 1 A = 0 k k
10 9 mul01d A A < 1 A = 0 k k 0 = 0
11 7 10 eqtrd A A < 1 A = 0 k k A k = 0
12 simpr A A < 1 A = 0 k = 0 k = 0
13 12 oveq1d A A < 1 A = 0 k = 0 k A k = 0 A k
14 simplll A A < 1 A = 0 k = 0 A
15 0nn0 0 0
16 12 15 eqeltrdi A A < 1 A = 0 k = 0 k 0
17 14 16 expcld A A < 1 A = 0 k = 0 A k
18 17 mul02d A A < 1 A = 0 k = 0 0 A k = 0
19 13 18 eqtrd A A < 1 A = 0 k = 0 k A k = 0
20 11 19 jaodan A A < 1 A = 0 k k = 0 k A k = 0
21 2 20 sylan2b A A < 1 A = 0 k 0 k A k = 0
22 21 mpteq2dva A A < 1 A = 0 k 0 k A k = k 0 0
23 1 22 syl5eq A A < 1 A = 0 F = k 0 0
24 fconstmpt 0 × 0 = k 0 0
25 nn0uz 0 = 0
26 25 xpeq1i 0 × 0 = 0 × 0
27 24 26 eqtr3i k 0 0 = 0 × 0
28 23 27 eqtrdi A A < 1 A = 0 F = 0 × 0
29 28 seqeq3d A A < 1 A = 0 seq 0 + F = seq 0 + 0 × 0
30 0z 0
31 serclim0 0 seq 0 + 0 × 0 0
32 30 31 ax-mp seq 0 + 0 × 0 0
33 29 32 eqbrtrdi A A < 1 A = 0 seq 0 + F 0
34 seqex seq 0 + F V
35 c0ex 0 V
36 34 35 breldm seq 0 + F 0 seq 0 + F dom
37 33 36 syl A A < 1 A = 0 seq 0 + F dom
38 1red A A < 1 A 0 1
39 abscl A A
40 39 adantr A A < 1 A
41 peano2re A A + 1
42 40 41 syl A A < 1 A + 1
43 42 rehalfcld A A < 1 A + 1 2
44 43 adantr A A < 1 A 0 A + 1 2
45 absrpcl A A 0 A +
46 45 adantlr A A < 1 A 0 A +
47 44 46 rerpdivcld A A < 1 A 0 A + 1 2 A
48 40 recnd A A < 1 A
49 48 mulid2d A A < 1 1 A = A
50 simpr A A < 1 A < 1
51 1re 1
52 avglt1 A 1 A < 1 A < A + 1 2
53 40 51 52 sylancl A A < 1 A < 1 A < A + 1 2
54 50 53 mpbid A A < 1 A < A + 1 2
55 49 54 eqbrtrd A A < 1 1 A < A + 1 2
56 55 adantr A A < 1 A 0 1 A < A + 1 2
57 38 44 46 ltmuldivd A A < 1 A 0 1 A < A + 1 2 1 < A + 1 2 A
58 56 57 mpbid A A < 1 A 0 1 < A + 1 2 A
59 expmulnbnd 1 A + 1 2 A 1 < A + 1 2 A n 0 k n 1 k < A + 1 2 A k
60 38 47 58 59 syl3anc A A < 1 A 0 n 0 k n 1 k < A + 1 2 A k
61 eluznn0 n 0 k n k 0
62 nn0cn k 0 k
63 62 adantl A A < 1 A 0 k 0 k
64 63 mulid2d A A < 1 A 0 k 0 1 k = k
65 43 recnd A A < 1 A + 1 2
66 65 ad2antrr A A < 1 A 0 k 0 A + 1 2
67 48 ad2antrr A A < 1 A 0 k 0 A
68 46 adantr A A < 1 A 0 k 0 A +
69 68 rpne0d A A < 1 A 0 k 0 A 0
70 simpr A A < 1 A 0 k 0 k 0
71 66 67 69 70 expdivd A A < 1 A 0 k 0 A + 1 2 A k = A + 1 2 k A k
72 64 71 breq12d A A < 1 A 0 k 0 1 k < A + 1 2 A k k < A + 1 2 k A k
73 nn0re k 0 k
74 73 adantl A A < 1 A 0 k 0 k
75 reexpcl A + 1 2 k 0 A + 1 2 k
76 44 75 sylan A A < 1 A 0 k 0 A + 1 2 k
77 40 adantr A A < 1 A 0 A
78 reexpcl A k 0 A k
79 77 78 sylan A A < 1 A 0 k 0 A k
80 77 adantr A A < 1 A 0 k 0 A
81 nn0z k 0 k
82 81 adantl A A < 1 A 0 k 0 k
83 68 rpgt0d A A < 1 A 0 k 0 0 < A
84 expgt0 A k 0 < A 0 < A k
85 80 82 83 84 syl3anc A A < 1 A 0 k 0 0 < A k
86 ltmuldiv k A + 1 2 k A k 0 < A k k A k < A + 1 2 k k < A + 1 2 k A k
87 74 76 79 85 86 syl112anc A A < 1 A 0 k 0 k A k < A + 1 2 k k < A + 1 2 k A k
88 72 87 bitr4d A A < 1 A 0 k 0 1 k < A + 1 2 A k k A k < A + 1 2 k
89 61 88 sylan2 A A < 1 A 0 n 0 k n 1 k < A + 1 2 A k k A k < A + 1 2 k
90 89 anassrs A A < 1 A 0 n 0 k n 1 k < A + 1 2 A k k A k < A + 1 2 k
91 90 ralbidva A A < 1 A 0 n 0 k n 1 k < A + 1 2 A k k n k A k < A + 1 2 k
92 simprl A A < 1 n 0 k n k A k < A + 1 2 k n 0
93 oveq2 k = m A + 1 2 k = A + 1 2 m
94 eqid k 0 A + 1 2 k = k 0 A + 1 2 k
95 ovex A + 1 2 m V
96 93 94 95 fvmpt m 0 k 0 A + 1 2 k m = A + 1 2 m
97 96 adantl A A < 1 n 0 k n k A k < A + 1 2 k m 0 k 0 A + 1 2 k m = A + 1 2 m
98 43 ad2antrr A A < 1 n 0 k n k A k < A + 1 2 k m 0 A + 1 2
99 simpr A A < 1 n 0 k n k A k < A + 1 2 k m 0 m 0
100 98 99 reexpcld A A < 1 n 0 k n k A k < A + 1 2 k m 0 A + 1 2 m
101 97 100 eqeltrd A A < 1 n 0 k n k A k < A + 1 2 k m 0 k 0 A + 1 2 k m
102 id k = m k = m
103 oveq2 k = m A k = A m
104 102 103 oveq12d k = m k A k = m A m
105 ovex m A m V
106 104 1 105 fvmpt m 0 F m = m A m
107 106 adantl A A < 1 n 0 k n k A k < A + 1 2 k m 0 F m = m A m
108 nn0cn m 0 m
109 108 adantl A A < 1 n 0 k n k A k < A + 1 2 k m 0 m
110 expcl A m 0 A m
111 110 ad4ant14 A A < 1 n 0 k n k A k < A + 1 2 k m 0 A m
112 109 111 mulcld A A < 1 n 0 k n k A k < A + 1 2 k m 0 m A m
113 107 112 eqeltrd A A < 1 n 0 k n k A k < A + 1 2 k m 0 F m
114 0red A A < 1 0
115 absge0 A 0 A
116 115 adantr A A < 1 0 A
117 114 40 43 116 54 lelttrd A A < 1 0 < A + 1 2
118 114 43 117 ltled A A < 1 0 A + 1 2
119 43 118 absidd A A < 1 A + 1 2 = A + 1 2
120 avglt2 A 1 A < 1 A + 1 2 < 1
121 40 51 120 sylancl A A < 1 A < 1 A + 1 2 < 1
122 50 121 mpbid A A < 1 A + 1 2 < 1
123 119 122 eqbrtrd A A < 1 A + 1 2 < 1
124 oveq2 k = n A + 1 2 k = A + 1 2 n
125 ovex A + 1 2 n V
126 124 94 125 fvmpt n 0 k 0 A + 1 2 k n = A + 1 2 n
127 126 adantl A A < 1 n 0 k 0 A + 1 2 k n = A + 1 2 n
128 65 123 127 geolim A A < 1 seq 0 + k 0 A + 1 2 k 1 1 A + 1 2
129 seqex seq 0 + k 0 A + 1 2 k V
130 ovex 1 1 A + 1 2 V
131 129 130 breldm seq 0 + k 0 A + 1 2 k 1 1 A + 1 2 seq 0 + k 0 A + 1 2 k dom
132 128 131 syl A A < 1 seq 0 + k 0 A + 1 2 k dom
133 132 adantr A A < 1 n 0 k n k A k < A + 1 2 k seq 0 + k 0 A + 1 2 k dom
134 1red A A < 1 n 0 k n k A k < A + 1 2 k 1
135 eluznn0 n 0 m n m 0
136 92 135 sylan A A < 1 n 0 k n k A k < A + 1 2 k m n m 0
137 136 nn0red A A < 1 n 0 k n k A k < A + 1 2 k m n m
138 simplll A A < 1 n 0 k n k A k < A + 1 2 k m n A
139 138 abscld A A < 1 n 0 k n k A k < A + 1 2 k m n A
140 139 136 reexpcld A A < 1 n 0 k n k A k < A + 1 2 k m n A m
141 137 140 remulcld A A < 1 n 0 k n k A k < A + 1 2 k m n m A m
142 136 100 syldan A A < 1 n 0 k n k A k < A + 1 2 k m n A + 1 2 m
143 simprr A A < 1 n 0 k n k A k < A + 1 2 k k n k A k < A + 1 2 k
144 oveq2 k = m A k = A m
145 102 144 oveq12d k = m k A k = m A m
146 145 93 breq12d k = m k A k < A + 1 2 k m A m < A + 1 2 m
147 146 rspccva k n k A k < A + 1 2 k m n m A m < A + 1 2 m
148 143 147 sylan A A < 1 n 0 k n k A k < A + 1 2 k m n m A m < A + 1 2 m
149 141 142 148 ltled A A < 1 n 0 k n k A k < A + 1 2 k m n m A m A + 1 2 m
150 136 nn0cnd A A < 1 n 0 k n k A k < A + 1 2 k m n m
151 138 136 expcld A A < 1 n 0 k n k A k < A + 1 2 k m n A m
152 150 151 absmuld A A < 1 n 0 k n k A k < A + 1 2 k m n m A m = m A m
153 136 nn0ge0d A A < 1 n 0 k n k A k < A + 1 2 k m n 0 m
154 137 153 absidd A A < 1 n 0 k n k A k < A + 1 2 k m n m = m
155 138 136 absexpd A A < 1 n 0 k n k A k < A + 1 2 k m n A m = A m
156 154 155 oveq12d A A < 1 n 0 k n k A k < A + 1 2 k m n m A m = m A m
157 152 156 eqtrd A A < 1 n 0 k n k A k < A + 1 2 k m n m A m = m A m
158 142 recnd A A < 1 n 0 k n k A k < A + 1 2 k m n A + 1 2 m
159 158 mulid2d A A < 1 n 0 k n k A k < A + 1 2 k m n 1 A + 1 2 m = A + 1 2 m
160 149 157 159 3brtr4d A A < 1 n 0 k n k A k < A + 1 2 k m n m A m 1 A + 1 2 m
161 136 106 syl A A < 1 n 0 k n k A k < A + 1 2 k m n F m = m A m
162 161 fveq2d A A < 1 n 0 k n k A k < A + 1 2 k m n F m = m A m
163 136 96 syl A A < 1 n 0 k n k A k < A + 1 2 k m n k 0 A + 1 2 k m = A + 1 2 m
164 163 oveq2d A A < 1 n 0 k n k A k < A + 1 2 k m n 1 k 0 A + 1 2 k m = 1 A + 1 2 m
165 160 162 164 3brtr4d A A < 1 n 0 k n k A k < A + 1 2 k m n F m 1 k 0 A + 1 2 k m
166 25 92 101 113 133 134 165 cvgcmpce A A < 1 n 0 k n k A k < A + 1 2 k seq 0 + F dom
167 166 expr A A < 1 n 0 k n k A k < A + 1 2 k seq 0 + F dom
168 167 adantlr A A < 1 A 0 n 0 k n k A k < A + 1 2 k seq 0 + F dom
169 91 168 sylbid A A < 1 A 0 n 0 k n 1 k < A + 1 2 A k seq 0 + F dom
170 169 rexlimdva A A < 1 A 0 n 0 k n 1 k < A + 1 2 A k seq 0 + F dom
171 60 170 mpd A A < 1 A 0 seq 0 + F dom
172 37 171 pm2.61dane A A < 1 seq 0 + F dom