Metamath Proof Explorer


Theorem geomulcvg

Description: The geometric series converges even if it is multiplied by k to result in the larger series k x. A ^ k . (Contributed by Mario Carneiro, 27-Mar-2015)

Ref Expression
Hypothesis geomulcvg.1 F=k0kAk
Assertion geomulcvg AA<1seq0+Fdom

Proof

Step Hyp Ref Expression
1 geomulcvg.1 F=k0kAk
2 elnn0 k0kk=0
3 simpr AA<1A=0A=0
4 3 oveq1d AA<1A=0Ak=0k
5 0exp k0k=0
6 4 5 sylan9eq AA<1A=0kAk=0
7 6 oveq2d AA<1A=0kkAk=k0
8 nncn kk
9 8 adantl AA<1A=0kk
10 9 mul01d AA<1A=0kk0=0
11 7 10 eqtrd AA<1A=0kkAk=0
12 simpr AA<1A=0k=0k=0
13 12 oveq1d AA<1A=0k=0kAk=0Ak
14 simplll AA<1A=0k=0A
15 0nn0 00
16 12 15 eqeltrdi AA<1A=0k=0k0
17 14 16 expcld AA<1A=0k=0Ak
18 17 mul02d AA<1A=0k=00Ak=0
19 13 18 eqtrd AA<1A=0k=0kAk=0
20 11 19 jaodan AA<1A=0kk=0kAk=0
21 2 20 sylan2b AA<1A=0k0kAk=0
22 21 mpteq2dva AA<1A=0k0kAk=k00
23 1 22 eqtrid AA<1A=0F=k00
24 fconstmpt 0×0=k00
25 nn0uz 0=0
26 25 xpeq1i 0×0=0×0
27 24 26 eqtr3i k00=0×0
28 23 27 eqtrdi AA<1A=0F=0×0
29 28 seqeq3d AA<1A=0seq0+F=seq0+0×0
30 0z 0
31 serclim0 0seq0+0×00
32 30 31 ax-mp seq0+0×00
33 29 32 eqbrtrdi AA<1A=0seq0+F0
34 seqex seq0+FV
35 c0ex 0V
36 34 35 breldm seq0+F0seq0+Fdom
37 33 36 syl AA<1A=0seq0+Fdom
38 1red AA<1A01
39 abscl AA
40 39 adantr AA<1A
41 peano2re AA+1
42 40 41 syl AA<1A+1
43 42 rehalfcld AA<1A+12
44 43 adantr AA<1A0A+12
45 absrpcl AA0A+
46 45 adantlr AA<1A0A+
47 44 46 rerpdivcld AA<1A0A+12A
48 40 recnd AA<1A
49 48 mullidd AA<11A=A
50 simpr AA<1A<1
51 1re 1
52 avglt1 A1A<1A<A+12
53 40 51 52 sylancl AA<1A<1A<A+12
54 50 53 mpbid AA<1A<A+12
55 49 54 eqbrtrd AA<11A<A+12
56 55 adantr AA<1A01A<A+12
57 38 44 46 ltmuldivd AA<1A01A<A+121<A+12A
58 56 57 mpbid AA<1A01<A+12A
59 expmulnbnd 1A+12A1<A+12An0kn1k<A+12Ak
60 38 47 58 59 syl3anc AA<1A0n0kn1k<A+12Ak
61 eluznn0 n0knk0
62 nn0cn k0k
63 62 adantl AA<1A0k0k
64 63 mullidd AA<1A0k01k=k
65 43 recnd AA<1A+12
66 65 ad2antrr AA<1A0k0A+12
67 48 ad2antrr AA<1A0k0A
68 46 adantr AA<1A0k0A+
69 68 rpne0d AA<1A0k0A0
70 simpr AA<1A0k0k0
71 66 67 69 70 expdivd AA<1A0k0A+12Ak=A+12kAk
72 64 71 breq12d AA<1A0k01k<A+12Akk<A+12kAk
73 nn0re k0k
74 73 adantl AA<1A0k0k
75 reexpcl A+12k0A+12k
76 44 75 sylan AA<1A0k0A+12k
77 40 adantr AA<1A0A
78 reexpcl Ak0Ak
79 77 78 sylan AA<1A0k0Ak
80 77 adantr AA<1A0k0A
81 nn0z k0k
82 81 adantl AA<1A0k0k
83 68 rpgt0d AA<1A0k00<A
84 expgt0 Ak0<A0<Ak
85 80 82 83 84 syl3anc AA<1A0k00<Ak
86 ltmuldiv kA+12kAk0<AkkAk<A+12kk<A+12kAk
87 74 76 79 85 86 syl112anc AA<1A0k0kAk<A+12kk<A+12kAk
88 72 87 bitr4d AA<1A0k01k<A+12AkkAk<A+12k
89 61 88 sylan2 AA<1A0n0kn1k<A+12AkkAk<A+12k
90 89 anassrs AA<1A0n0kn1k<A+12AkkAk<A+12k
91 90 ralbidva AA<1A0n0kn1k<A+12AkknkAk<A+12k
92 simprl AA<1n0knkAk<A+12kn0
93 oveq2 k=mA+12k=A+12m
94 eqid k0A+12k=k0A+12k
95 ovex A+12mV
96 93 94 95 fvmpt m0k0A+12km=A+12m
97 96 adantl AA<1n0knkAk<A+12km0k0A+12km=A+12m
98 43 ad2antrr AA<1n0knkAk<A+12km0A+12
99 simpr AA<1n0knkAk<A+12km0m0
100 98 99 reexpcld AA<1n0knkAk<A+12km0A+12m
101 97 100 eqeltrd AA<1n0knkAk<A+12km0k0A+12km
102 id k=mk=m
103 oveq2 k=mAk=Am
104 102 103 oveq12d k=mkAk=mAm
105 ovex mAmV
106 104 1 105 fvmpt m0Fm=mAm
107 106 adantl AA<1n0knkAk<A+12km0Fm=mAm
108 nn0cn m0m
109 108 adantl AA<1n0knkAk<A+12km0m
110 expcl Am0Am
111 110 ad4ant14 AA<1n0knkAk<A+12km0Am
112 109 111 mulcld AA<1n0knkAk<A+12km0mAm
113 107 112 eqeltrd AA<1n0knkAk<A+12km0Fm
114 0red AA<10
115 absge0 A0A
116 115 adantr AA<10A
117 114 40 43 116 54 lelttrd AA<10<A+12
118 114 43 117 ltled AA<10A+12
119 43 118 absidd AA<1A+12=A+12
120 avglt2 A1A<1A+12<1
121 40 51 120 sylancl AA<1A<1A+12<1
122 50 121 mpbid AA<1A+12<1
123 119 122 eqbrtrd AA<1A+12<1
124 oveq2 k=nA+12k=A+12n
125 ovex A+12nV
126 124 94 125 fvmpt n0k0A+12kn=A+12n
127 126 adantl AA<1n0k0A+12kn=A+12n
128 65 123 127 geolim AA<1seq0+k0A+12k11A+12
129 seqex seq0+k0A+12kV
130 ovex 11A+12V
131 129 130 breldm seq0+k0A+12k11A+12seq0+k0A+12kdom
132 128 131 syl AA<1seq0+k0A+12kdom
133 132 adantr AA<1n0knkAk<A+12kseq0+k0A+12kdom
134 1red AA<1n0knkAk<A+12k1
135 eluznn0 n0mnm0
136 92 135 sylan AA<1n0knkAk<A+12kmnm0
137 136 nn0red AA<1n0knkAk<A+12kmnm
138 simplll AA<1n0knkAk<A+12kmnA
139 138 abscld AA<1n0knkAk<A+12kmnA
140 139 136 reexpcld AA<1n0knkAk<A+12kmnAm
141 137 140 remulcld AA<1n0knkAk<A+12kmnmAm
142 136 100 syldan AA<1n0knkAk<A+12kmnA+12m
143 simprr AA<1n0knkAk<A+12kknkAk<A+12k
144 oveq2 k=mAk=Am
145 102 144 oveq12d k=mkAk=mAm
146 145 93 breq12d k=mkAk<A+12kmAm<A+12m
147 146 rspccva knkAk<A+12kmnmAm<A+12m
148 143 147 sylan AA<1n0knkAk<A+12kmnmAm<A+12m
149 141 142 148 ltled AA<1n0knkAk<A+12kmnmAmA+12m
150 136 nn0cnd AA<1n0knkAk<A+12kmnm
151 138 136 expcld AA<1n0knkAk<A+12kmnAm
152 150 151 absmuld AA<1n0knkAk<A+12kmnmAm=mAm
153 136 nn0ge0d AA<1n0knkAk<A+12kmn0m
154 137 153 absidd AA<1n0knkAk<A+12kmnm=m
155 138 136 absexpd AA<1n0knkAk<A+12kmnAm=Am
156 154 155 oveq12d AA<1n0knkAk<A+12kmnmAm=mAm
157 152 156 eqtrd AA<1n0knkAk<A+12kmnmAm=mAm
158 142 recnd AA<1n0knkAk<A+12kmnA+12m
159 158 mullidd AA<1n0knkAk<A+12kmn1A+12m=A+12m
160 149 157 159 3brtr4d AA<1n0knkAk<A+12kmnmAm1A+12m
161 136 106 syl AA<1n0knkAk<A+12kmnFm=mAm
162 161 fveq2d AA<1n0knkAk<A+12kmnFm=mAm
163 136 96 syl AA<1n0knkAk<A+12kmnk0A+12km=A+12m
164 163 oveq2d AA<1n0knkAk<A+12kmn1k0A+12km=1A+12m
165 160 162 164 3brtr4d AA<1n0knkAk<A+12kmnFm1k0A+12km
166 25 92 101 113 133 134 165 cvgcmpce AA<1n0knkAk<A+12kseq0+Fdom
167 166 expr AA<1n0knkAk<A+12kseq0+Fdom
168 167 adantlr AA<1A0n0knkAk<A+12kseq0+Fdom
169 91 168 sylbid AA<1A0n0kn1k<A+12Akseq0+Fdom
170 169 rexlimdva AA<1A0n0kn1k<A+12Akseq0+Fdom
171 60 170 mpd AA<1A0seq0+Fdom
172 37 171 pm2.61dane AA<1seq0+Fdom