Metamath Proof Explorer


Theorem iccpartgt

Description: If there is a partition, then all intermediate points and the bounds are strictly ordered. (Contributed by AV, 18-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φM
iccpartgtprec.p φPRePartM
Assertion iccpartgt φi0Mj0Mi<jPi<Pj

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φM
2 iccpartgtprec.p φPRePartM
3 1 nnnn0d φM0
4 elnn0uz M0M0
5 3 4 sylib φM0
6 fzpred M00M=00+1M
7 5 6 syl φ0M=00+1M
8 0p1e1 0+1=1
9 8 oveq1i 0+1M=1M
10 9 a1i φ0+1M=1M
11 10 uneq2d φ00+1M=01M
12 7 11 eqtrd φ0M=01M
13 12 eleq2d φi0Mi01M
14 elun i01Mi0i1M
15 velsn i0i=0
16 15 orbi1i i0i1Mi=0i1M
17 14 16 bitri i01Mi=0i1M
18 fzisfzounsn M00M=0..^MM
19 5 18 syl φ0M=0..^MM
20 19 eleq2d φj0Mj0..^MM
21 elun j0..^MMj0..^MjM
22 velsn jMj=M
23 22 orbi2i j0..^MjMj0..^Mj=M
24 21 23 bitri j0..^MMj0..^Mj=M
25 20 24 bitrdi φj0Mj0..^Mj=M
26 simpl j0..^M0<jj0..^M
27 simpr j0..^M0<j0<j
28 27 gt0ne0d j0..^M0<jj0
29 fzo1fzo0n0 j1..^Mj0..^Mj0
30 26 28 29 sylanbrc j0..^M0<jj1..^M
31 1 2 iccpartigtl φk1..^MP0<Pk
32 fveq2 k=jPk=Pj
33 32 breq2d k=jP0<PkP0<Pj
34 33 rspcv j1..^Mk1..^MP0<PkP0<Pj
35 30 31 34 syl2imc φj0..^M0<jP0<Pj
36 35 expd φj0..^M0<jP0<Pj
37 36 impcom j0..^Mφ0<jP0<Pj
38 breq1 i=0i<j0<j
39 fveq2 i=0Pi=P0
40 39 breq1d i=0Pi<PjP0<Pj
41 38 40 imbi12d i=0i<jPi<Pj0<jP0<Pj
42 37 41 imbitrrid i=0j0..^Mφi<jPi<Pj
43 42 expd i=0j0..^Mφi<jPi<Pj
44 43 com12 j0..^Mi=0φi<jPi<Pj
45 1 2 iccpartlt φP0<PM
46 fveq2 j=MPj=PM
47 39 46 breqan12rd j=Mi=0Pi<PjP0<PM
48 45 47 imbitrrid j=Mi=0φPi<Pj
49 48 a1dd j=Mi=0φi<jPi<Pj
50 49 ex j=Mi=0φi<jPi<Pj
51 44 50 jaoi j0..^Mj=Mi=0φi<jPi<Pj
52 51 com12 i=0j0..^Mj=Mφi<jPi<Pj
53 elfzelz i1Mi
54 53 ad3antlr j0..^Mi1Mi<jφi
55 53 peano2zd i1Mi+1
56 55 ad2antlr j0..^Mi1Mi<ji+1
57 elfzoelz j0..^Mj
58 57 ad2antrr j0..^Mi1Mi<jj
59 simpr j0..^Mi1Mi<ji<j
60 57 53 anim12ci j0..^Mi1Mij
61 60 adantr j0..^Mi1Mi<jij
62 zltp1le iji<ji+1j
63 61 62 syl j0..^Mi1Mi<ji<ji+1j
64 59 63 mpbid j0..^Mi1Mi<ji+1j
65 56 58 64 3jca j0..^Mi1Mi<ji+1ji+1j
66 65 adantr j0..^Mi1Mi<jφi+1ji+1j
67 eluz2 ji+1i+1ji+1j
68 66 67 sylibr j0..^Mi1Mi<jφji+1
69 1 ad2antlr j0..^Mi1Mi<jφkijM
70 2 ad2antlr j0..^Mi1Mi<jφkijPRePartM
71 1zzd j0..^Mi1Mi<jφkij1
72 elfzelz kijk
73 72 adantl j0..^Mi1Mi<jφkijk
74 elfzle1 i1M1i
75 elfzle1 kijik
76 1red kij1
77 elfzel1 kiji
78 77 zred kiji
79 72 zred kijk
80 letr 1ik1iik1k
81 76 78 79 80 syl3anc kij1iik1k
82 75 81 mpan2d kij1i1k
83 74 82 syl5com i1Mkij1k
84 83 ad3antlr j0..^Mi1Mi<jφkij1k
85 84 imp j0..^Mi1Mi<jφkij1k
86 eluz2 k11k1k
87 71 73 85 86 syl3anbrc j0..^Mi1Mi<jφkijk1
88 elfzel2 i1MM
89 88 ad2antlr j0..^Mi1Mi<jM
90 89 ad2antrr j0..^Mi1Mi<jφkijM
91 79 adantl j0..^Mi1Mi<jφkijk
92 57 zred j0..^Mj
93 92 ad4antr j0..^Mi1Mi<jφkijj
94 69 nnred j0..^Mi1Mi<jφkijM
95 elfzle2 kijkj
96 95 adantl j0..^Mi1Mi<jφkijkj
97 elfzolt2 j0..^Mj<M
98 97 ad4antr j0..^Mi1Mi<jφkijj<M
99 91 93 94 96 98 lelttrd j0..^Mi1Mi<jφkijk<M
100 elfzo2 k1..^Mk1Mk<M
101 87 90 99 100 syl3anbrc j0..^Mi1Mi<jφkijk1..^M
102 69 70 101 iccpartipre j0..^Mi1Mi<jφkijPk
103 1 ad2antlr j0..^Mi1Mi<jφkij1M
104 2 ad2antlr j0..^Mi1Mi<jφkij1PRePartM
105 57 ad3antrrr j0..^Mi1Mi<jφj
106 fzoval ji..^j=ij1
107 105 106 syl j0..^Mi1Mi<jφi..^j=ij1
108 elfzo0le j0..^MjM
109 0le1 01
110 0red i1M0
111 1red i1M1
112 53 zred i1Mi
113 letr 01i011i0i
114 110 111 112 113 syl3anc i1M011i0i
115 109 114 mpani i1M1i0i
116 74 115 mpd i1M0i
117 108 116 anim12ci j0..^Mi1M0ijM
118 117 adantr j0..^Mi1Mi<j0ijM
119 0zd j0..^M0
120 elfzoel2 j0..^MM
121 119 120 jca j0..^M0M
122 121 ad2antrr j0..^Mi1Mi<j0M
123 ssfzo12bi ij0Mi<ji..^j0..^M0ijM
124 61 122 59 123 syl3anc j0..^Mi1Mi<ji..^j0..^M0ijM
125 118 124 mpbird j0..^Mi1Mi<ji..^j0..^M
126 125 adantr j0..^Mi1Mi<jφi..^j0..^M
127 107 126 eqsstrrd j0..^Mi1Mi<jφij10..^M
128 127 sselda j0..^Mi1Mi<jφkij1k0..^M
129 iccpartimp MPRePartMk0..^MP*0MPk<Pk+1
130 103 104 128 129 syl3anc j0..^Mi1Mi<jφkij1P*0MPk<Pk+1
131 130 simprd j0..^Mi1Mi<jφkij1Pk<Pk+1
132 54 68 102 131 smonoord j0..^Mi1Mi<jφPi<Pj
133 132 exp31 j0..^Mi1Mi<jφPi<Pj
134 133 com23 j0..^Mi1Mφi<jPi<Pj
135 134 ex j0..^Mi1Mφi<jPi<Pj
136 elfzuz i1Mi1
137 136 adantr i1Mi<Mi1
138 88 adantr i1Mi<MM
139 simpr i1Mi<Mi<M
140 elfzo2 i1..^Mi1Mi<M
141 137 138 139 140 syl3anbrc i1Mi<Mi1..^M
142 1 2 iccpartiltu φk1..^MPk<PM
143 fveq2 k=iPk=Pi
144 143 breq1d k=iPk<PMPi<PM
145 144 rspcv i1..^Mk1..^MPk<PMPi<PM
146 141 142 145 syl2imc φi1Mi<MPi<PM
147 146 expd φi1Mi<MPi<PM
148 147 impcom i1Mφi<MPi<PM
149 148 imp i1Mφi<MPi<PM
150 149 a1i j=Mi1Mφi<MPi<PM
151 breq2 j=Mi<ji<M
152 151 anbi2d j=Mi1Mφi<ji1Mφi<M
153 46 breq2d j=MPi<PjPi<PM
154 150 152 153 3imtr4d j=Mi1Mφi<jPi<Pj
155 154 exp4c j=Mi1Mφi<jPi<Pj
156 135 155 jaoi j0..^Mj=Mi1Mφi<jPi<Pj
157 156 com12 i1Mj0..^Mj=Mφi<jPi<Pj
158 52 157 jaoi i=0i1Mj0..^Mj=Mφi<jPi<Pj
159 158 com13 φj0..^Mj=Mi=0i1Mi<jPi<Pj
160 25 159 sylbid φj0Mi=0i1Mi<jPi<Pj
161 160 com3r i=0i1Mφj0Mi<jPi<Pj
162 17 161 sylbi i01Mφj0Mi<jPi<Pj
163 162 com12 φi01Mj0Mi<jPi<Pj
164 13 163 sylbid φi0Mj0Mi<jPi<Pj
165 164 imp32 φi0Mj0Mi<jPi<Pj
166 165 ralrimivva φi0Mj0Mi<jPi<Pj