Metamath Proof Explorer


Theorem itg1mulc

Description: The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses i1fmulc.2 φFdom1
i1fmulc.3 φA
Assertion itg1mulc φ1×A×fF=A1F

Proof

Step Hyp Ref Expression
1 i1fmulc.2 φFdom1
2 i1fmulc.3 φA
3 itg10 1×0=0
4 reex V
5 4 a1i φA=0V
6 i1ff Fdom1F:
7 1 6 syl φF:
8 7 adantr φA=0F:
9 2 adantr φA=0A
10 0red φA=00
11 simplr φA=0xA=0
12 11 oveq1d φA=0xAx=0x
13 mul02lem2 x0x=0
14 13 adantl φA=0x0x=0
15 12 14 eqtrd φA=0xAx=0
16 5 8 9 10 15 caofid2 φA=0×A×fF=×0
17 16 fveq2d φA=01×A×fF=1×0
18 simpr φA=0A=0
19 18 oveq1d φA=0A1F=01F
20 itg1cl Fdom11F
21 1 20 syl φ1F
22 21 recnd φ1F
23 22 mul02d φ01F=0
24 23 adantr φA=001F=0
25 19 24 eqtrd φA=0A1F=0
26 3 17 25 3eqtr4a φA=01×A×fF=A1F
27 1 2 i1fmulc φ×A×fFdom1
28 27 adantr φA0×A×fFdom1
29 i1ff ×A×fFdom1×A×fF:
30 28 29 syl φA0×A×fF:
31 30 frnd φA0ran×A×fF
32 31 ssdifssd φA0ran×A×fF0
33 32 sselda φA0mran×A×fF0m
34 33 recnd φA0mran×A×fF0m
35 2 adantr φA0A
36 35 recnd φA0A
37 36 adantr φA0mran×A×fF0A
38 simplr φA0mran×A×fF0A0
39 34 37 38 divcan2d φA0mran×A×fF0AmA=m
40 1 2 i1fmulclem φA0m×A×fF-1m=F-1mA
41 33 40 syldan φA0mran×A×fF0×A×fF-1m=F-1mA
42 41 fveq2d φA0mran×A×fF0vol×A×fF-1m=volF-1mA
43 42 eqcomd φA0mran×A×fF0volF-1mA=vol×A×fF-1m
44 39 43 oveq12d φA0mran×A×fF0AmAvolF-1mA=mvol×A×fF-1m
45 2 ad2antrr φA0mran×A×fF0A
46 33 45 38 redivcld φA0mran×A×fF0mA
47 46 recnd φA0mran×A×fF0mA
48 1 ad2antrr φA0mran×A×fF0Fdom1
49 45 recnd φA0mran×A×fF0A
50 eldifsni mran×A×fF0m0
51 50 adantl φA0mran×A×fF0m0
52 34 49 51 38 divne0d φA0mran×A×fF0mA0
53 eldifsn mA0mAmA0
54 46 52 53 sylanbrc φA0mran×A×fF0mA0
55 i1fima2sn Fdom1mA0volF-1mA
56 48 54 55 syl2anc φA0mran×A×fF0volF-1mA
57 56 recnd φA0mran×A×fF0volF-1mA
58 37 47 57 mulassd φA0mran×A×fF0AmAvolF-1mA=AmAvolF-1mA
59 44 58 eqtr3d φA0mran×A×fF0mvol×A×fF-1m=AmAvolF-1mA
60 59 sumeq2dv φA0mran×A×fF0mvol×A×fF-1m=mran×A×fF0AmAvolF-1mA
61 i1frn ×A×fFdom1ran×A×fFFin
62 28 61 syl φA0ran×A×fFFin
63 difss ran×A×fF0ran×A×fF
64 ssfi ran×A×fFFinran×A×fF0ran×A×fFran×A×fF0Fin
65 62 63 64 sylancl φA0ran×A×fF0Fin
66 47 57 mulcld φA0mran×A×fF0mAvolF-1mA
67 65 36 66 fsummulc2 φA0Amran×A×fF0mAvolF-1mA=mran×A×fF0AmAvolF-1mA
68 60 67 eqtr4d φA0mran×A×fF0mvol×A×fF-1m=Amran×A×fF0mAvolF-1mA
69 itg1val ×A×fFdom11×A×fF=mran×A×fF0mvol×A×fF-1m
70 28 69 syl φA01×A×fF=mran×A×fF0mvol×A×fF-1m
71 1 adantr φA0Fdom1
72 itg1val Fdom11F=kranF0kvolF-1k
73 71 72 syl φA01F=kranF0kvolF-1k
74 id k=mAk=mA
75 sneq k=mAk=mA
76 75 imaeq2d k=mAF-1k=F-1mA
77 76 fveq2d k=mAvolF-1k=volF-1mA
78 74 77 oveq12d k=mAkvolF-1k=mAvolF-1mA
79 eqid nran×A×fF0nA=nran×A×fF0nA
80 eldifi nran×A×fF0nran×A×fF
81 4 a1i φV
82 7 ffnd φFFn
83 eqidd φyFy=Fy
84 81 2 82 83 ofc1 φy×A×fFy=AFy
85 84 adantlr φA0y×A×fFy=AFy
86 85 oveq1d φA0y×A×fFyA=AFyA
87 7 adantr φA0F:
88 87 ffvelcdmda φA0yFy
89 88 recnd φA0yFy
90 36 adantr φA0yA
91 simplr φA0yA0
92 89 90 91 divcan3d φA0yAFyA=Fy
93 86 92 eqtrd φA0y×A×fFyA=Fy
94 87 ffnd φA0FFn
95 fnfvelrn FFnyFyranF
96 94 95 sylan φA0yFyranF
97 93 96 eqeltrd φA0y×A×fFyAranF
98 97 ralrimiva φA0y×A×fFyAranF
99 30 ffnd φA0×A×fFFn
100 oveq1 n=×A×fFynA=×A×fFyA
101 100 eleq1d n=×A×fFynAranF×A×fFyAranF
102 101 ralrn ×A×fFFnnran×A×fFnAranFy×A×fFyAranF
103 99 102 syl φA0nran×A×fFnAranFy×A×fFyAranF
104 98 103 mpbird φA0nran×A×fFnAranF
105 104 r19.21bi φA0nran×A×fFnAranF
106 80 105 sylan2 φA0nran×A×fF0nAranF
107 32 sselda φA0nran×A×fF0n
108 107 recnd φA0nran×A×fF0n
109 36 adantr φA0nran×A×fF0A
110 eldifsni nran×A×fF0n0
111 110 adantl φA0nran×A×fF0n0
112 simplr φA0nran×A×fF0A0
113 108 109 111 112 divne0d φA0nran×A×fF0nA0
114 eldifsn nAranF0nAranFnA0
115 106 113 114 sylanbrc φA0nran×A×fF0nAranF0
116 eldifi kranF0kranF
117 fnfvelrn ×A×fFFny×A×fFyran×A×fF
118 99 117 sylan φA0y×A×fFyran×A×fF
119 85 118 eqeltrrd φA0yAFyran×A×fF
120 119 ralrimiva φA0yAFyran×A×fF
121 oveq2 k=FyAk=AFy
122 121 eleq1d k=FyAkran×A×fFAFyran×A×fF
123 122 ralrn FFnkranFAkran×A×fFyAFyran×A×fF
124 94 123 syl φA0kranFAkran×A×fFyAFyran×A×fF
125 120 124 mpbird φA0kranFAkran×A×fF
126 125 r19.21bi φA0kranFAkran×A×fF
127 116 126 sylan2 φA0kranF0Akran×A×fF
128 36 adantr φA0kranF0A
129 87 frnd φA0ranF
130 129 ssdifssd φA0ranF0
131 130 sselda φA0kranF0k
132 131 recnd φA0kranF0k
133 simplr φA0kranF0A0
134 eldifsni kranF0k0
135 134 adantl φA0kranF0k0
136 128 132 133 135 mulne0d φA0kranF0Ak0
137 eldifsn Akran×A×fF0Akran×A×fFAk0
138 127 136 137 sylanbrc φA0kranF0Akran×A×fF0
139 simpl nran×A×fF0kranF0nran×A×fF0
140 ssel2 ran×A×fF0nran×A×fF0n
141 32 139 140 syl2an φA0nran×A×fF0kranF0n
142 141 recnd φA0nran×A×fF0kranF0n
143 2 ad2antrr φA0nran×A×fF0kranF0A
144 143 recnd φA0nran×A×fF0kranF0A
145 131 adantrl φA0nran×A×fF0kranF0k
146 145 recnd φA0nran×A×fF0kranF0k
147 simplr φA0nran×A×fF0kranF0A0
148 142 144 146 147 divmuld φA0nran×A×fF0kranF0nA=kAk=n
149 148 bicomd φA0nran×A×fF0kranF0Ak=nnA=k
150 eqcom n=AkAk=n
151 eqcom k=nAnA=k
152 149 150 151 3bitr4g φA0nran×A×fF0kranF0n=Akk=nA
153 79 115 138 152 f1o2d φA0nran×A×fF0nA:ran×A×fF01-1 ontoranF0
154 oveq1 n=mnA=mA
155 ovex mAV
156 154 79 155 fvmpt mran×A×fF0nran×A×fF0nAm=mA
157 156 adantl φA0mran×A×fF0nran×A×fF0nAm=mA
158 i1fima2sn Fdom1kranF0volF-1k
159 71 158 sylan φA0kranF0volF-1k
160 131 159 remulcld φA0kranF0kvolF-1k
161 160 recnd φA0kranF0kvolF-1k
162 78 65 153 157 161 fsumf1o φA0kranF0kvolF-1k=mran×A×fF0mAvolF-1mA
163 73 162 eqtrd φA01F=mran×A×fF0mAvolF-1mA
164 163 oveq2d φA0A1F=Amran×A×fF0mAvolF-1mA
165 68 70 164 3eqtr4d φA01×A×fF=A1F
166 26 165 pm2.61dane φ1×A×fF=A1F