Metamath Proof Explorer


Theorem itgabsnc

Description: Choice-free analogue of itgabs . (Contributed by Brendan Leahy, 19-Nov-2017) (Revised by Brendan Leahy, 19-Jun-2018)

Ref Expression
Hypotheses itgabsnc.1 φxABV
itgabsnc.2 φxAB𝐿1
itgabsnc.m1 φxABMblFn
itgabsnc.m2 φyAABdxy/xBMblFn
Assertion itgabsnc φABdxABdx

Proof

Step Hyp Ref Expression
1 itgabsnc.1 φxABV
2 itgabsnc.2 φxAB𝐿1
3 itgabsnc.m1 φxABMblFn
4 itgabsnc.m2 φyAABdxy/xBMblFn
5 1 2 itgcl φABdx
6 5 cjcld φABdx
7 iblmbf xAB𝐿1xABMblFn
8 2 7 syl φxABMblFn
9 8 1 mbfmptcl φxAB
10 9 ralrimiva φxAB
11 nfv yB
12 nfcsb1v _xy/xB
13 12 nfel1 xy/xB
14 csbeq1a x=yB=y/xB
15 14 eleq1d x=yBy/xB
16 11 13 15 cbvralw xAByAy/xB
17 10 16 sylib φyAy/xB
18 17 r19.21bi φyAy/xB
19 nfcv _yB
20 19 12 14 cbvmpt xAB=yAy/xB
21 20 2 eqeltrrid φyAy/xB𝐿1
22 6 18 21 4 iblmulc2nc φyAABdxy/xB𝐿1
23 6 adantr φyAABdx
24 23 18 mulcld φyAABdxy/xB
25 24 iblcn φyAABdxy/xB𝐿1yAABdxy/xB𝐿1yAABdxy/xB𝐿1
26 22 25 mpbid φyAABdxy/xB𝐿1yAABdxy/xB𝐿1
27 26 simpld φyAABdxy/xB𝐿1
28 23 18 absmuld φyAABdxy/xB=ABdxy/xB
29 28 mpteq2dva φyAABdxy/xB=yAABdxy/xB
30 8 1 mbfdm2 φAdomvol
31 23 abscld φyAABdx
32 18 abscld φyAy/xB
33 fconstmpt A×ABdx=yAABdx
34 33 a1i φA×ABdx=yAABdx
35 nfcv _yB
36 nfcv _xabs
37 36 12 nffv _xy/xB
38 14 fveq2d x=yB=y/xB
39 35 37 38 cbvmpt xAB=yAy/xB
40 39 a1i φxAB=yAy/xB
41 30 31 32 34 40 offval2 φA×ABdx×fxAB=yAABdxy/xB
42 29 41 eqtr4d φyAABdxy/xB=A×ABdx×fxAB
43 6 abscld φABdx
44 9 abscld φxAB
45 44 recnd φxAB
46 45 fmpttd φxAB:A
47 3 43 46 mbfmulc2re φA×ABdx×fxABMblFn
48 42 47 eqeltrd φyAABdxy/xBMblFn
49 24 22 48 iblabsnc φyAABdxy/xB𝐿1
50 24 recld φyAABdxy/xB
51 24 abscld φyAABdxy/xB
52 24 releabsd φyAABdxy/xBABdxy/xB
53 27 49 50 51 52 itgle φAABdxy/xBdyAABdxy/xBdy
54 5 abscld φABdx
55 54 recnd φABdx
56 55 sqvald φABdx2=ABdxABdx
57 5 absvalsqd φABdx2=ABdxABdx
58 5 6 mulcomd φABdxABdx=ABdxABdx
59 14 19 12 cbvitg ABdx=Ay/xBdy
60 59 oveq2i ABdxABdx=ABdxAy/xBdy
61 6 18 21 4 itgmulc2nc φABdxAy/xBdy=AABdxy/xBdy
62 60 61 eqtrid φABdxABdx=AABdxy/xBdy
63 57 58 62 3eqtrd φABdx2=AABdxy/xBdy
64 63 fveq2d φABdx2=AABdxy/xBdy
65 54 resqcld φABdx2
66 65 rered φABdx2=ABdx2
67 ovexd φyAABdxy/xBV
68 67 22 itgre φAABdxy/xBdy=AABdxy/xBdy
69 64 66 68 3eqtr3d φABdx2=AABdxy/xBdy
70 56 69 eqtr3d φABdxABdx=AABdxy/xBdy
71 38 35 37 cbvitg ABdx=Ay/xBdy
72 71 oveq2i ABdxABdx=ABdxAy/xBdy
73 1 2 3 iblabsnc φxAB𝐿1
74 39 73 eqeltrrid φyAy/xB𝐿1
75 54 adantr φyAABdx
76 fconstmpt A×ABdx=yAABdx
77 76 a1i φA×ABdx=yAABdx
78 30 75 32 77 40 offval2 φA×ABdx×fxAB=yAABdxy/xB
79 3 54 46 mbfmulc2re φA×ABdx×fxABMblFn
80 78 79 eqeltrrd φyAABdxy/xBMblFn
81 55 32 74 80 itgmulc2nc φABdxAy/xBdy=AABdxy/xBdy
82 5 adantr φyAABdx
83 82 abscjd φyAABdx=ABdx
84 83 oveq1d φyAABdxy/xB=ABdxy/xB
85 28 84 eqtrd φyAABdxy/xB=ABdxy/xB
86 85 itgeq2dv φAABdxy/xBdy=AABdxy/xBdy
87 81 86 eqtr4d φABdxAy/xBdy=AABdxy/xBdy
88 72 87 eqtrid φABdxABdx=AABdxy/xBdy
89 53 70 88 3brtr4d φABdxABdxABdxABdx
90 89 adantr φ0<ABdxABdxABdxABdxABdx
91 54 adantr φ0<ABdxABdx
92 44 73 itgrecl φABdx
93 92 adantr φ0<ABdxABdx
94 simpr φ0<ABdx0<ABdx
95 lemul2 ABdxABdxABdx0<ABdxABdxABdxABdxABdxABdxABdx
96 91 93 91 94 95 syl112anc φ0<ABdxABdxABdxABdxABdxABdxABdx
97 90 96 mpbird φ0<ABdxABdxABdx
98 97 ex φ0<ABdxABdxABdx
99 9 absge0d φxA0B
100 73 44 99 itgge0 φ0ABdx
101 breq1 0=ABdx0ABdxABdxABdx
102 100 101 syl5ibcom φ0=ABdxABdxABdx
103 5 absge0d φ0ABdx
104 0re 0
105 leloe 0ABdx0ABdx0<ABdx0=ABdx
106 104 54 105 sylancr φ0ABdx0<ABdx0=ABdx
107 103 106 mpbid φ0<ABdx0=ABdx
108 98 102 107 mpjaod φABdxABdx