Metamath Proof Explorer


Theorem itgmulc2nc

Description: Choice-free analogue of itgmulc2 . (Contributed by Brendan Leahy, 19-Nov-2017)

Ref Expression
Hypotheses itgmulc2nc.1 φC
itgmulc2nc.2 φxABV
itgmulc2nc.3 φxAB𝐿1
itgmulc2nc.m φxACBMblFn
Assertion itgmulc2nc φCABdx=ACBdx

Proof

Step Hyp Ref Expression
1 itgmulc2nc.1 φC
2 itgmulc2nc.2 φxABV
3 itgmulc2nc.3 φxAB𝐿1
4 itgmulc2nc.m φxACBMblFn
5 1 recld φC
6 5 recnd φC
7 6 adantr φxAC
8 iblmbf xAB𝐿1xABMblFn
9 3 8 syl φxABMblFn
10 9 2 mbfmptcl φxAB
11 10 recld φxAB
12 11 recnd φxAB
13 7 12 mulcld φxACB
14 10 iblcn φxAB𝐿1xAB𝐿1xAB𝐿1
15 3 14 mpbid φxAB𝐿1xAB𝐿1
16 15 simpld φxAB𝐿1
17 ovexd φxACBV
18 4 17 mbfdm2 φAdomvol
19 fconstmpt A×C=xAC
20 19 a1i φA×C=xAC
21 eqidd φxAB=xAB
22 18 7 11 20 21 offval2 φA×C×fxAB=xACB
23 iblmbf xAB𝐿1xABMblFn
24 16 23 syl φxABMblFn
25 12 fmpttd φxAB:A
26 24 5 25 mbfmulc2re φA×C×fxABMblFn
27 22 26 eqeltrrd φxACBMblFn
28 6 11 16 27 iblmulc2nc φxACB𝐿1
29 13 28 itgcl φACBdx
30 ax-icn i
31 10 imcld φxAB
32 31 recnd φxAB
33 7 32 mulcld φxACB
34 15 simprd φxAB𝐿1
35 eqidd φxAB=xAB
36 18 7 31 20 35 offval2 φA×C×fxAB=xACB
37 iblmbf xAB𝐿1xABMblFn
38 34 37 syl φxABMblFn
39 32 fmpttd φxAB:A
40 38 5 39 mbfmulc2re φA×C×fxABMblFn
41 36 40 eqeltrrd φxACBMblFn
42 6 31 34 41 iblmulc2nc φxACB𝐿1
43 33 42 itgcl φACBdx
44 mulcl iACBdxiACBdx
45 30 43 44 sylancr φiACBdx
46 1 imcld φC
47 46 recnd φC
48 47 negcld φC
49 48 adantr φxAC
50 49 32 mulcld φxACB
51 fconstmpt A×C=xAC
52 51 a1i φA×C=xAC
53 18 49 31 52 35 offval2 φA×C×fxAB=xACB
54 46 renegcld φC
55 38 54 39 mbfmulc2re φA×C×fxABMblFn
56 53 55 eqeltrrd φxACBMblFn
57 48 31 34 56 iblmulc2nc φxACB𝐿1
58 50 57 itgcl φACBdx
59 47 adantr φxAC
60 59 12 mulcld φxACB
61 fconstmpt A×C=xAC
62 61 a1i φA×C=xAC
63 18 59 11 62 21 offval2 φA×C×fxAB=xACB
64 24 46 25 mbfmulc2re φA×C×fxABMblFn
65 63 64 eqeltrrd φxACBMblFn
66 47 11 16 65 iblmulc2nc φxACB𝐿1
67 60 66 itgcl φACBdx
68 mulcl iACBdxiACBdx
69 30 67 68 sylancr φiACBdx
70 29 45 58 69 add4d φACBdx+iACBdx+ACBdx+iACBdx=ACBdx+ACBdx+iACBdx+iACBdx
71 30 a1i φi
72 71 47 mulcld φiC
73 2 3 itgcl φABdx
74 6 72 73 adddird φC+iCABdx=CABdx+iCABdx
75 2 3 itgcnval φABdx=ABdx+iABdx
76 75 oveq2d φCABdx=CABdx+iABdx
77 11 16 itgcl φABdx
78 31 34 itgcl φABdx
79 mulcl iABdxiABdx
80 30 78 79 sylancr φiABdx
81 6 77 80 adddid φCABdx+iABdx=CABdx+CiABdx
82 6 11 16 27 5 11 itgmulc2nclem2 φCABdx=ACBdx
83 6 71 78 mul12d φCiABdx=iCABdx
84 6 31 34 41 5 31 itgmulc2nclem2 φCABdx=ACBdx
85 84 oveq2d φiCABdx=iACBdx
86 83 85 eqtrd φCiABdx=iACBdx
87 82 86 oveq12d φCABdx+CiABdx=ACBdx+iACBdx
88 76 81 87 3eqtrd φCABdx=ACBdx+iACBdx
89 75 oveq2d φiCABdx=iCABdx+iABdx
90 72 77 80 adddid φiCABdx+iABdx=iCABdx+iCiABdx
91 71 47 77 mulassd φiCABdx=iCABdx
92 47 11 16 65 46 11 itgmulc2nclem2 φCABdx=ACBdx
93 92 oveq2d φiCABdx=iACBdx
94 91 93 eqtrd φiCABdx=iACBdx
95 71 47 71 78 mul4d φiCiABdx=iiCABdx
96 ixi ii=1
97 96 oveq1i iiCABdx=-1CABdx
98 47 78 mulcld φCABdx
99 98 mulm1d φ-1CABdx=CABdx
100 97 99 eqtrid φiiCABdx=CABdx
101 47 78 mulneg1d φCABdx=CABdx
102 48 31 34 56 54 31 itgmulc2nclem2 φCABdx=ACBdx
103 101 102 eqtr3d φCABdx=ACBdx
104 95 100 103 3eqtrd φiCiABdx=ACBdx
105 94 104 oveq12d φiCABdx+iCiABdx=iACBdx+ACBdx
106 69 58 addcomd φiACBdx+ACBdx=ACBdx+iACBdx
107 105 106 eqtrd φiCABdx+iCiABdx=ACBdx+iACBdx
108 89 90 107 3eqtrd φiCABdx=ACBdx+iACBdx
109 88 108 oveq12d φCABdx+iCABdx=ACBdx+iACBdx+ACBdx+iACBdx
110 74 109 eqtrd φC+iCABdx=ACBdx+iACBdx+ACBdx+iACBdx
111 59 32 mulcld φxACB
112 18 59 31 62 35 offval2 φA×C×fxAB=xACB
113 38 46 39 mbfmulc2re φA×C×fxABMblFn
114 112 113 eqeltrrd φxACBMblFn
115 47 31 34 114 iblmulc2nc φxACB𝐿1
116 1 adantr φxAC
117 116 10 mulcld φxACB
118 eqidd φxACB=xACB
119 ref :
120 119 a1i φ:
121 120 feqmptd φ=kk
122 fveq2 k=CBk=CB
123 117 118 121 122 fmptco φxACB=xACB
124 116 10 remuld φxACB=CBCB
125 124 mpteq2dva φxACB=xACBCB
126 123 125 eqtrd φxACB=xACBCB
127 117 fmpttd φxACB:A
128 ismbfcn xACB:AxACBMblFnxACBMblFnxACBMblFn
129 127 128 syl φxACBMblFnxACBMblFnxACBMblFn
130 4 129 mpbid φxACBMblFnxACBMblFn
131 130 simpld φxACBMblFn
132 126 131 eqeltrrd φxACBCBMblFn
133 13 28 111 115 132 itgsubnc φACBCBdx=ACBdxACBdx
134 124 itgeq2dv φACBdx=ACBCBdx
135 111 115 itgneg φACBdx=ACBdx
136 59 32 mulneg1d φxACB=CB
137 136 itgeq2dv φACBdx=ACBdx
138 135 137 eqtr4d φACBdx=ACBdx
139 138 oveq2d φACBdx+ACBdx=ACBdx+ACBdx
140 111 115 itgcl φACBdx
141 29 140 negsubd φACBdx+ACBdx=ACBdxACBdx
142 139 141 eqtr3d φACBdx+ACBdx=ACBdxACBdx
143 133 134 142 3eqtr4d φACBdx=ACBdx+ACBdx
144 116 10 immuld φxACB=CB+CB
145 144 itgeq2dv φACBdx=ACB+CBdx
146 imf :
147 146 a1i φ:
148 147 feqmptd φ=kk
149 fveq2 k=CBk=CB
150 117 118 148 149 fmptco φxACB=xACB
151 144 mpteq2dva φxACB=xACB+CB
152 150 151 eqtrd φxACB=xACB+CB
153 130 simprd φxACBMblFn
154 152 153 eqeltrrd φxACB+CBMblFn
155 33 42 60 66 154 itgaddnc φACB+CBdx=ACBdx+ACBdx
156 145 155 eqtrd φACBdx=ACBdx+ACBdx
157 156 oveq2d φiACBdx=iACBdx+ACBdx
158 71 43 67 adddid φiACBdx+ACBdx=iACBdx+iACBdx
159 157 158 eqtrd φiACBdx=iACBdx+iACBdx
160 143 159 oveq12d φACBdx+iACBdx=ACBdx+ACBdx+iACBdx+iACBdx
161 70 110 160 3eqtr4d φC+iCABdx=ACBdx+iACBdx
162 1 replimd φC=C+iC
163 162 oveq1d φCABdx=C+iCABdx
164 1 2 3 4 iblmulc2nc φxACB𝐿1
165 117 164 itgcnval φACBdx=ACBdx+iACBdx
166 161 163 165 3eqtr4d φCABdx=ACBdx