Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Brendan Leahy
itgmulc2nc
Next ⟩
itgabsnc
Metamath Proof Explorer
Ascii
Unicode
Theorem
itgmulc2nc
Description:
Choice-free analogue of
itgmulc2
.
(Contributed by
Brendan Leahy
, 19-Nov-2017)
Ref
Expression
Hypotheses
itgmulc2nc.1
⊢
φ
→
C
∈
ℂ
itgmulc2nc.2
⊢
φ
∧
x
∈
A
→
B
∈
V
itgmulc2nc.3
⊢
φ
→
x
∈
A
⟼
B
∈
𝐿
1
itgmulc2nc.m
⊢
φ
→
x
∈
A
⟼
C
B
∈
MblFn
Assertion
itgmulc2nc
⊢
φ
→
C
∫
A
B
d
x
=
∫
A
C
B
d
x
Proof
Step
Hyp
Ref
Expression
1
itgmulc2nc.1
⊢
φ
→
C
∈
ℂ
2
itgmulc2nc.2
⊢
φ
∧
x
∈
A
→
B
∈
V
3
itgmulc2nc.3
⊢
φ
→
x
∈
A
⟼
B
∈
𝐿
1
4
itgmulc2nc.m
⊢
φ
→
x
∈
A
⟼
C
B
∈
MblFn
5
1
recld
⊢
φ
→
ℜ
C
∈
ℝ
6
5
recnd
⊢
φ
→
ℜ
C
∈
ℂ
7
6
adantr
⊢
φ
∧
x
∈
A
→
ℜ
C
∈
ℂ
8
iblmbf
⊢
x
∈
A
⟼
B
∈
𝐿
1
→
x
∈
A
⟼
B
∈
MblFn
9
3
8
syl
⊢
φ
→
x
∈
A
⟼
B
∈
MblFn
10
9
2
mbfmptcl
⊢
φ
∧
x
∈
A
→
B
∈
ℂ
11
10
recld
⊢
φ
∧
x
∈
A
→
ℜ
B
∈
ℝ
12
11
recnd
⊢
φ
∧
x
∈
A
→
ℜ
B
∈
ℂ
13
7
12
mulcld
⊢
φ
∧
x
∈
A
→
ℜ
C
ℜ
B
∈
ℂ
14
10
iblcn
⊢
φ
→
x
∈
A
⟼
B
∈
𝐿
1
↔
x
∈
A
⟼
ℜ
B
∈
𝐿
1
∧
x
∈
A
⟼
ℑ
B
∈
𝐿
1
15
3
14
mpbid
⊢
φ
→
x
∈
A
⟼
ℜ
B
∈
𝐿
1
∧
x
∈
A
⟼
ℑ
B
∈
𝐿
1
16
15
simpld
⊢
φ
→
x
∈
A
⟼
ℜ
B
∈
𝐿
1
17
ovexd
⊢
φ
∧
x
∈
A
→
C
B
∈
V
18
4
17
mbfdm2
⊢
φ
→
A
∈
dom
vol
19
fconstmpt
⊢
A
×
ℜ
C
=
x
∈
A
⟼
ℜ
C
20
19
a1i
⊢
φ
→
A
×
ℜ
C
=
x
∈
A
⟼
ℜ
C
21
eqidd
⊢
φ
→
x
∈
A
⟼
ℜ
B
=
x
∈
A
⟼
ℜ
B
22
18
7
11
20
21
offval2
⊢
φ
→
A
×
ℜ
C
×
f
x
∈
A
⟼
ℜ
B
=
x
∈
A
⟼
ℜ
C
ℜ
B
23
iblmbf
⊢
x
∈
A
⟼
ℜ
B
∈
𝐿
1
→
x
∈
A
⟼
ℜ
B
∈
MblFn
24
16
23
syl
⊢
φ
→
x
∈
A
⟼
ℜ
B
∈
MblFn
25
12
fmpttd
⊢
φ
→
x
∈
A
⟼
ℜ
B
:
A
⟶
ℂ
26
24
5
25
mbfmulc2re
⊢
φ
→
A
×
ℜ
C
×
f
x
∈
A
⟼
ℜ
B
∈
MblFn
27
22
26
eqeltrrd
⊢
φ
→
x
∈
A
⟼
ℜ
C
ℜ
B
∈
MblFn
28
6
11
16
27
iblmulc2nc
⊢
φ
→
x
∈
A
⟼
ℜ
C
ℜ
B
∈
𝐿
1
29
13
28
itgcl
⊢
φ
→
∫
A
ℜ
C
ℜ
B
d
x
∈
ℂ
30
ax-icn
⊢
i
∈
ℂ
31
10
imcld
⊢
φ
∧
x
∈
A
→
ℑ
B
∈
ℝ
32
31
recnd
⊢
φ
∧
x
∈
A
→
ℑ
B
∈
ℂ
33
7
32
mulcld
⊢
φ
∧
x
∈
A
→
ℜ
C
ℑ
B
∈
ℂ
34
15
simprd
⊢
φ
→
x
∈
A
⟼
ℑ
B
∈
𝐿
1
35
eqidd
⊢
φ
→
x
∈
A
⟼
ℑ
B
=
x
∈
A
⟼
ℑ
B
36
18
7
31
20
35
offval2
⊢
φ
→
A
×
ℜ
C
×
f
x
∈
A
⟼
ℑ
B
=
x
∈
A
⟼
ℜ
C
ℑ
B
37
iblmbf
⊢
x
∈
A
⟼
ℑ
B
∈
𝐿
1
→
x
∈
A
⟼
ℑ
B
∈
MblFn
38
34
37
syl
⊢
φ
→
x
∈
A
⟼
ℑ
B
∈
MblFn
39
32
fmpttd
⊢
φ
→
x
∈
A
⟼
ℑ
B
:
A
⟶
ℂ
40
38
5
39
mbfmulc2re
⊢
φ
→
A
×
ℜ
C
×
f
x
∈
A
⟼
ℑ
B
∈
MblFn
41
36
40
eqeltrrd
⊢
φ
→
x
∈
A
⟼
ℜ
C
ℑ
B
∈
MblFn
42
6
31
34
41
iblmulc2nc
⊢
φ
→
x
∈
A
⟼
ℜ
C
ℑ
B
∈
𝐿
1
43
33
42
itgcl
⊢
φ
→
∫
A
ℜ
C
ℑ
B
d
x
∈
ℂ
44
mulcl
⊢
i
∈
ℂ
∧
∫
A
ℜ
C
ℑ
B
d
x
∈
ℂ
→
i
∫
A
ℜ
C
ℑ
B
d
x
∈
ℂ
45
30
43
44
sylancr
⊢
φ
→
i
∫
A
ℜ
C
ℑ
B
d
x
∈
ℂ
46
1
imcld
⊢
φ
→
ℑ
C
∈
ℝ
47
46
recnd
⊢
φ
→
ℑ
C
∈
ℂ
48
47
negcld
⊢
φ
→
−
ℑ
C
∈
ℂ
49
48
adantr
⊢
φ
∧
x
∈
A
→
−
ℑ
C
∈
ℂ
50
49
32
mulcld
⊢
φ
∧
x
∈
A
→
−
ℑ
C
ℑ
B
∈
ℂ
51
fconstmpt
⊢
A
×
−
ℑ
C
=
x
∈
A
⟼
−
ℑ
C
52
51
a1i
⊢
φ
→
A
×
−
ℑ
C
=
x
∈
A
⟼
−
ℑ
C
53
18
49
31
52
35
offval2
⊢
φ
→
A
×
−
ℑ
C
×
f
x
∈
A
⟼
ℑ
B
=
x
∈
A
⟼
−
ℑ
C
ℑ
B
54
46
renegcld
⊢
φ
→
−
ℑ
C
∈
ℝ
55
38
54
39
mbfmulc2re
⊢
φ
→
A
×
−
ℑ
C
×
f
x
∈
A
⟼
ℑ
B
∈
MblFn
56
53
55
eqeltrrd
⊢
φ
→
x
∈
A
⟼
−
ℑ
C
ℑ
B
∈
MblFn
57
48
31
34
56
iblmulc2nc
⊢
φ
→
x
∈
A
⟼
−
ℑ
C
ℑ
B
∈
𝐿
1
58
50
57
itgcl
⊢
φ
→
∫
A
−
ℑ
C
ℑ
B
d
x
∈
ℂ
59
47
adantr
⊢
φ
∧
x
∈
A
→
ℑ
C
∈
ℂ
60
59
12
mulcld
⊢
φ
∧
x
∈
A
→
ℑ
C
ℜ
B
∈
ℂ
61
fconstmpt
⊢
A
×
ℑ
C
=
x
∈
A
⟼
ℑ
C
62
61
a1i
⊢
φ
→
A
×
ℑ
C
=
x
∈
A
⟼
ℑ
C
63
18
59
11
62
21
offval2
⊢
φ
→
A
×
ℑ
C
×
f
x
∈
A
⟼
ℜ
B
=
x
∈
A
⟼
ℑ
C
ℜ
B
64
24
46
25
mbfmulc2re
⊢
φ
→
A
×
ℑ
C
×
f
x
∈
A
⟼
ℜ
B
∈
MblFn
65
63
64
eqeltrrd
⊢
φ
→
x
∈
A
⟼
ℑ
C
ℜ
B
∈
MblFn
66
47
11
16
65
iblmulc2nc
⊢
φ
→
x
∈
A
⟼
ℑ
C
ℜ
B
∈
𝐿
1
67
60
66
itgcl
⊢
φ
→
∫
A
ℑ
C
ℜ
B
d
x
∈
ℂ
68
mulcl
⊢
i
∈
ℂ
∧
∫
A
ℑ
C
ℜ
B
d
x
∈
ℂ
→
i
∫
A
ℑ
C
ℜ
B
d
x
∈
ℂ
69
30
67
68
sylancr
⊢
φ
→
i
∫
A
ℑ
C
ℜ
B
d
x
∈
ℂ
70
29
45
58
69
add4d
⊢
φ
→
∫
A
ℜ
C
ℜ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
71
30
a1i
⊢
φ
→
i
∈
ℂ
72
71
47
mulcld
⊢
φ
→
i
ℑ
C
∈
ℂ
73
2
3
itgcl
⊢
φ
→
∫
A
B
d
x
∈
ℂ
74
6
72
73
adddird
⊢
φ
→
ℜ
C
+
i
ℑ
C
∫
A
B
d
x
=
ℜ
C
∫
A
B
d
x
+
i
ℑ
C
∫
A
B
d
x
75
2
3
itgcnval
⊢
φ
→
∫
A
B
d
x
=
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
76
75
oveq2d
⊢
φ
→
ℜ
C
∫
A
B
d
x
=
ℜ
C
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
77
11
16
itgcl
⊢
φ
→
∫
A
ℜ
B
d
x
∈
ℂ
78
31
34
itgcl
⊢
φ
→
∫
A
ℑ
B
d
x
∈
ℂ
79
mulcl
⊢
i
∈
ℂ
∧
∫
A
ℑ
B
d
x
∈
ℂ
→
i
∫
A
ℑ
B
d
x
∈
ℂ
80
30
78
79
sylancr
⊢
φ
→
i
∫
A
ℑ
B
d
x
∈
ℂ
81
6
77
80
adddid
⊢
φ
→
ℜ
C
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
=
ℜ
C
∫
A
ℜ
B
d
x
+
ℜ
C
i
∫
A
ℑ
B
d
x
82
6
11
16
27
5
11
itgmulc2nclem2
⊢
φ
→
ℜ
C
∫
A
ℜ
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
83
6
71
78
mul12d
⊢
φ
→
ℜ
C
i
∫
A
ℑ
B
d
x
=
i
ℜ
C
∫
A
ℑ
B
d
x
84
6
31
34
41
5
31
itgmulc2nclem2
⊢
φ
→
ℜ
C
∫
A
ℑ
B
d
x
=
∫
A
ℜ
C
ℑ
B
d
x
85
84
oveq2d
⊢
φ
→
i
ℜ
C
∫
A
ℑ
B
d
x
=
i
∫
A
ℜ
C
ℑ
B
d
x
86
83
85
eqtrd
⊢
φ
→
ℜ
C
i
∫
A
ℑ
B
d
x
=
i
∫
A
ℜ
C
ℑ
B
d
x
87
82
86
oveq12d
⊢
φ
→
ℜ
C
∫
A
ℜ
B
d
x
+
ℜ
C
i
∫
A
ℑ
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
88
76
81
87
3eqtrd
⊢
φ
→
ℜ
C
∫
A
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
89
75
oveq2d
⊢
φ
→
i
ℑ
C
∫
A
B
d
x
=
i
ℑ
C
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
90
72
77
80
adddid
⊢
φ
→
i
ℑ
C
∫
A
ℜ
B
d
x
+
i
∫
A
ℑ
B
d
x
=
i
ℑ
C
∫
A
ℜ
B
d
x
+
i
ℑ
C
i
∫
A
ℑ
B
d
x
91
71
47
77
mulassd
⊢
φ
→
i
ℑ
C
∫
A
ℜ
B
d
x
=
i
ℑ
C
∫
A
ℜ
B
d
x
92
47
11
16
65
46
11
itgmulc2nclem2
⊢
φ
→
ℑ
C
∫
A
ℜ
B
d
x
=
∫
A
ℑ
C
ℜ
B
d
x
93
92
oveq2d
⊢
φ
→
i
ℑ
C
∫
A
ℜ
B
d
x
=
i
∫
A
ℑ
C
ℜ
B
d
x
94
91
93
eqtrd
⊢
φ
→
i
ℑ
C
∫
A
ℜ
B
d
x
=
i
∫
A
ℑ
C
ℜ
B
d
x
95
71
47
71
78
mul4d
⊢
φ
→
i
ℑ
C
i
∫
A
ℑ
B
d
x
=
i
i
ℑ
C
∫
A
ℑ
B
d
x
96
ixi
⊢
i
i
=
−
1
97
96
oveq1i
⊢
i
i
ℑ
C
∫
A
ℑ
B
d
x
=
-1
ℑ
C
∫
A
ℑ
B
d
x
98
47
78
mulcld
⊢
φ
→
ℑ
C
∫
A
ℑ
B
d
x
∈
ℂ
99
98
mulm1d
⊢
φ
→
-1
ℑ
C
∫
A
ℑ
B
d
x
=
−
ℑ
C
∫
A
ℑ
B
d
x
100
97
99
eqtrid
⊢
φ
→
i
i
ℑ
C
∫
A
ℑ
B
d
x
=
−
ℑ
C
∫
A
ℑ
B
d
x
101
47
78
mulneg1d
⊢
φ
→
−
ℑ
C
∫
A
ℑ
B
d
x
=
−
ℑ
C
∫
A
ℑ
B
d
x
102
48
31
34
56
54
31
itgmulc2nclem2
⊢
φ
→
−
ℑ
C
∫
A
ℑ
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
103
101
102
eqtr3d
⊢
φ
→
−
ℑ
C
∫
A
ℑ
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
104
95
100
103
3eqtrd
⊢
φ
→
i
ℑ
C
i
∫
A
ℑ
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
105
94
104
oveq12d
⊢
φ
→
i
ℑ
C
∫
A
ℜ
B
d
x
+
i
ℑ
C
i
∫
A
ℑ
B
d
x
=
i
∫
A
ℑ
C
ℜ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
106
69
58
addcomd
⊢
φ
→
i
∫
A
ℑ
C
ℜ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
107
105
106
eqtrd
⊢
φ
→
i
ℑ
C
∫
A
ℜ
B
d
x
+
i
ℑ
C
i
∫
A
ℑ
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
108
89
90
107
3eqtrd
⊢
φ
→
i
ℑ
C
∫
A
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
109
88
108
oveq12d
⊢
φ
→
ℜ
C
∫
A
B
d
x
+
i
ℑ
C
∫
A
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
110
74
109
eqtrd
⊢
φ
→
ℜ
C
+
i
ℑ
C
∫
A
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
111
59
32
mulcld
⊢
φ
∧
x
∈
A
→
ℑ
C
ℑ
B
∈
ℂ
112
18
59
31
62
35
offval2
⊢
φ
→
A
×
ℑ
C
×
f
x
∈
A
⟼
ℑ
B
=
x
∈
A
⟼
ℑ
C
ℑ
B
113
38
46
39
mbfmulc2re
⊢
φ
→
A
×
ℑ
C
×
f
x
∈
A
⟼
ℑ
B
∈
MblFn
114
112
113
eqeltrrd
⊢
φ
→
x
∈
A
⟼
ℑ
C
ℑ
B
∈
MblFn
115
47
31
34
114
iblmulc2nc
⊢
φ
→
x
∈
A
⟼
ℑ
C
ℑ
B
∈
𝐿
1
116
1
adantr
⊢
φ
∧
x
∈
A
→
C
∈
ℂ
117
116
10
mulcld
⊢
φ
∧
x
∈
A
→
C
B
∈
ℂ
118
eqidd
⊢
φ
→
x
∈
A
⟼
C
B
=
x
∈
A
⟼
C
B
119
ref
⊢
ℜ
:
ℂ
⟶
ℝ
120
119
a1i
⊢
φ
→
ℜ
:
ℂ
⟶
ℝ
121
120
feqmptd
⊢
φ
→
ℜ
=
k
∈
ℂ
⟼
ℜ
k
122
fveq2
⊢
k
=
C
B
→
ℜ
k
=
ℜ
C
B
123
117
118
121
122
fmptco
⊢
φ
→
ℜ
∘
x
∈
A
⟼
C
B
=
x
∈
A
⟼
ℜ
C
B
124
116
10
remuld
⊢
φ
∧
x
∈
A
→
ℜ
C
B
=
ℜ
C
ℜ
B
−
ℑ
C
ℑ
B
125
124
mpteq2dva
⊢
φ
→
x
∈
A
⟼
ℜ
C
B
=
x
∈
A
⟼
ℜ
C
ℜ
B
−
ℑ
C
ℑ
B
126
123
125
eqtrd
⊢
φ
→
ℜ
∘
x
∈
A
⟼
C
B
=
x
∈
A
⟼
ℜ
C
ℜ
B
−
ℑ
C
ℑ
B
127
117
fmpttd
⊢
φ
→
x
∈
A
⟼
C
B
:
A
⟶
ℂ
128
ismbfcn
⊢
x
∈
A
⟼
C
B
:
A
⟶
ℂ
→
x
∈
A
⟼
C
B
∈
MblFn
↔
ℜ
∘
x
∈
A
⟼
C
B
∈
MblFn
∧
ℑ
∘
x
∈
A
⟼
C
B
∈
MblFn
129
127
128
syl
⊢
φ
→
x
∈
A
⟼
C
B
∈
MblFn
↔
ℜ
∘
x
∈
A
⟼
C
B
∈
MblFn
∧
ℑ
∘
x
∈
A
⟼
C
B
∈
MblFn
130
4
129
mpbid
⊢
φ
→
ℜ
∘
x
∈
A
⟼
C
B
∈
MblFn
∧
ℑ
∘
x
∈
A
⟼
C
B
∈
MblFn
131
130
simpld
⊢
φ
→
ℜ
∘
x
∈
A
⟼
C
B
∈
MblFn
132
126
131
eqeltrrd
⊢
φ
→
x
∈
A
⟼
ℜ
C
ℜ
B
−
ℑ
C
ℑ
B
∈
MblFn
133
13
28
111
115
132
itgsubnc
⊢
φ
→
∫
A
ℜ
C
ℜ
B
−
ℑ
C
ℑ
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
−
∫
A
ℑ
C
ℑ
B
d
x
134
124
itgeq2dv
⊢
φ
→
∫
A
ℜ
C
B
d
x
=
∫
A
ℜ
C
ℜ
B
−
ℑ
C
ℑ
B
d
x
135
111
115
itgneg
⊢
φ
→
−
∫
A
ℑ
C
ℑ
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
136
59
32
mulneg1d
⊢
φ
∧
x
∈
A
→
−
ℑ
C
ℑ
B
=
−
ℑ
C
ℑ
B
137
136
itgeq2dv
⊢
φ
→
∫
A
−
ℑ
C
ℑ
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
138
135
137
eqtr4d
⊢
φ
→
−
∫
A
ℑ
C
ℑ
B
d
x
=
∫
A
−
ℑ
C
ℑ
B
d
x
139
138
oveq2d
⊢
φ
→
∫
A
ℜ
C
ℜ
B
d
x
+
−
∫
A
ℑ
C
ℑ
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
140
111
115
itgcl
⊢
φ
→
∫
A
ℑ
C
ℑ
B
d
x
∈
ℂ
141
29
140
negsubd
⊢
φ
→
∫
A
ℜ
C
ℜ
B
d
x
+
−
∫
A
ℑ
C
ℑ
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
−
∫
A
ℑ
C
ℑ
B
d
x
142
139
141
eqtr3d
⊢
φ
→
∫
A
ℜ
C
ℜ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
−
∫
A
ℑ
C
ℑ
B
d
x
143
133
134
142
3eqtr4d
⊢
φ
→
∫
A
ℜ
C
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
144
116
10
immuld
⊢
φ
∧
x
∈
A
→
ℑ
C
B
=
ℜ
C
ℑ
B
+
ℑ
C
ℜ
B
145
144
itgeq2dv
⊢
φ
→
∫
A
ℑ
C
B
d
x
=
∫
A
ℜ
C
ℑ
B
+
ℑ
C
ℜ
B
d
x
146
imf
⊢
ℑ
:
ℂ
⟶
ℝ
147
146
a1i
⊢
φ
→
ℑ
:
ℂ
⟶
ℝ
148
147
feqmptd
⊢
φ
→
ℑ
=
k
∈
ℂ
⟼
ℑ
k
149
fveq2
⊢
k
=
C
B
→
ℑ
k
=
ℑ
C
B
150
117
118
148
149
fmptco
⊢
φ
→
ℑ
∘
x
∈
A
⟼
C
B
=
x
∈
A
⟼
ℑ
C
B
151
144
mpteq2dva
⊢
φ
→
x
∈
A
⟼
ℑ
C
B
=
x
∈
A
⟼
ℜ
C
ℑ
B
+
ℑ
C
ℜ
B
152
150
151
eqtrd
⊢
φ
→
ℑ
∘
x
∈
A
⟼
C
B
=
x
∈
A
⟼
ℜ
C
ℑ
B
+
ℑ
C
ℜ
B
153
130
simprd
⊢
φ
→
ℑ
∘
x
∈
A
⟼
C
B
∈
MblFn
154
152
153
eqeltrrd
⊢
φ
→
x
∈
A
⟼
ℜ
C
ℑ
B
+
ℑ
C
ℜ
B
∈
MblFn
155
33
42
60
66
154
itgaddnc
⊢
φ
→
∫
A
ℜ
C
ℑ
B
+
ℑ
C
ℜ
B
d
x
=
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
ℑ
C
ℜ
B
d
x
156
145
155
eqtrd
⊢
φ
→
∫
A
ℑ
C
B
d
x
=
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
ℑ
C
ℜ
B
d
x
157
156
oveq2d
⊢
φ
→
i
∫
A
ℑ
C
B
d
x
=
i
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
ℑ
C
ℜ
B
d
x
158
71
43
67
adddid
⊢
φ
→
i
∫
A
ℜ
C
ℑ
B
d
x
+
∫
A
ℑ
C
ℜ
B
d
x
=
i
∫
A
ℜ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
159
157
158
eqtrd
⊢
φ
→
i
∫
A
ℑ
C
B
d
x
=
i
∫
A
ℜ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
160
143
159
oveq12d
⊢
φ
→
∫
A
ℜ
C
B
d
x
+
i
∫
A
ℑ
C
B
d
x
=
∫
A
ℜ
C
ℜ
B
d
x
+
∫
A
−
ℑ
C
ℑ
B
d
x
+
i
∫
A
ℜ
C
ℑ
B
d
x
+
i
∫
A
ℑ
C
ℜ
B
d
x
161
70
110
160
3eqtr4d
⊢
φ
→
ℜ
C
+
i
ℑ
C
∫
A
B
d
x
=
∫
A
ℜ
C
B
d
x
+
i
∫
A
ℑ
C
B
d
x
162
1
replimd
⊢
φ
→
C
=
ℜ
C
+
i
ℑ
C
163
162
oveq1d
⊢
φ
→
C
∫
A
B
d
x
=
ℜ
C
+
i
ℑ
C
∫
A
B
d
x
164
1
2
3
4
iblmulc2nc
⊢
φ
→
x
∈
A
⟼
C
B
∈
𝐿
1
165
117
164
itgcnval
⊢
φ
→
∫
A
C
B
d
x
=
∫
A
ℜ
C
B
d
x
+
i
∫
A
ℑ
C
B
d
x
166
161
163
165
3eqtr4d
⊢
φ
→
C
∫
A
B
d
x
=
∫
A
C
B
d
x