Metamath Proof Explorer


Theorem ivthALT

Description: An alternate proof of the Intermediate Value Theorem ivth using topology. (Contributed by Jeff Hankins, 17-Aug-2009) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ivthALT ABUA<BABDDF:DcnFABUFAFBxABFx=U

Proof

Step Hyp Ref Expression
1 simp31 ABDDF:DcnFABUFAFBF:Dcn
2 cncff F:DcnF:D
3 1 2 syl ABDDF:DcnFABUFAFBF:D
4 ffun F:DFunF
5 3 4 syl ABDDF:DcnFABUFAFBFunF
6 5 3ad2ant3 ABUA<BABDDF:DcnFABUFAFBFunF
7 iccconn ABtopGenran.𝑡ABConn
8 7 3adant3 ABUtopGenran.𝑡ABConn
9 8 3ad2ant1 ABUA<BABDDF:DcnFABUFAFBtopGenran.𝑡ABConn
10 simpr1 DF:DcnFABUFAFBF:Dcn
11 10 2 syl DF:DcnFABUFAFBF:D
12 11 anim2i ABDDF:DcnFABUFAFBABDF:D
13 12 3impb ABDDF:DcnFABUFAFBABDF:D
14 13 3ad2ant3 ABUA<BABDDF:DcnFABUFAFBABDF:D
15 4 adantl ABDF:DFunF
16 fdm F:DdomF=D
17 16 sseq2d F:DABdomFABD
18 17 biimparc ABDF:DABdomF
19 15 18 jca ABDF:DFunFABdomF
20 14 19 syl ABUA<BABDDF:DcnFABUFAFBFunFABdomF
21 fores FunFABdomFFAB:ABontoFAB
22 20 21 syl ABUA<BABDDF:DcnFABUFAFBFAB:ABontoFAB
23 retop topGenran.Top
24 simp332 ABUA<BABDDF:DcnFABUFAFBFAB
25 uniretop =topGenran.
26 25 restuni topGenran.TopFABFAB=topGenran.𝑡FAB
27 23 24 26 sylancr ABUA<BABDDF:DcnFABUFAFBFAB=topGenran.𝑡FAB
28 foeq3 FAB=topGenran.𝑡FABFAB:ABontoFABFAB:ABontotopGenran.𝑡FAB
29 27 28 syl ABUA<BABDDF:DcnFABUFAFBFAB:ABontoFABFAB:ABontotopGenran.𝑡FAB
30 22 29 mpbid ABUA<BABDDF:DcnFABUFAFBFAB:ABontotopGenran.𝑡FAB
31 simp331 ABUA<BABDDF:DcnFABUFAFBF:Dcn
32 ssid
33 eqid TopOpenfld=TopOpenfld
34 eqid TopOpenfld𝑡D=TopOpenfld𝑡D
35 33 cnfldtop TopOpenfldTop
36 33 cnfldtopon TopOpenfldTopOn
37 36 toponunii =TopOpenfld
38 37 restid TopOpenfldTopTopOpenfld𝑡=TopOpenfld
39 35 38 ax-mp TopOpenfld𝑡=TopOpenfld
40 39 eqcomi TopOpenfld=TopOpenfld𝑡
41 33 34 40 cncfcn DDcn=TopOpenfld𝑡DCnTopOpenfld
42 32 41 mpan2 DDcn=TopOpenfld𝑡DCnTopOpenfld
43 42 3ad2ant2 ABDDF:DcnFABUFAFBDcn=TopOpenfld𝑡DCnTopOpenfld
44 43 3ad2ant3 ABUA<BABDDF:DcnFABUFAFBDcn=TopOpenfld𝑡DCnTopOpenfld
45 31 44 eleqtrd ABUA<BABDDF:DcnFABUFAFBFTopOpenfld𝑡DCnTopOpenfld
46 simp31 ABUA<BABDDF:DcnFABUFAFBABD
47 simp32 ABUA<BABDDF:DcnFABUFAFBD
48 resttopon TopOpenfldTopOnDTopOpenfld𝑡DTopOnD
49 36 47 48 sylancr ABUA<BABDDF:DcnFABUFAFBTopOpenfld𝑡DTopOnD
50 toponuni TopOpenfld𝑡DTopOnDD=TopOpenfld𝑡D
51 49 50 syl ABUA<BABDDF:DcnFABUFAFBD=TopOpenfld𝑡D
52 46 51 sseqtrd ABUA<BABDDF:DcnFABUFAFBABTopOpenfld𝑡D
53 eqid TopOpenfld𝑡D=TopOpenfld𝑡D
54 53 cnrest FTopOpenfld𝑡DCnTopOpenfldABTopOpenfld𝑡DFABTopOpenfld𝑡D𝑡ABCnTopOpenfld
55 45 52 54 syl2anc ABUA<BABDDF:DcnFABUFAFBFABTopOpenfld𝑡D𝑡ABCnTopOpenfld
56 35 a1i ABUA<BABDDF:DcnFABUFAFBTopOpenfldTop
57 cnex V
58 ssexg DVDV
59 47 57 58 sylancl ABUA<BABDDF:DcnFABUFAFBDV
60 restabs TopOpenfldTopABDDVTopOpenfld𝑡D𝑡AB=TopOpenfld𝑡AB
61 56 46 59 60 syl3anc ABUA<BABDDF:DcnFABUFAFBTopOpenfld𝑡D𝑡AB=TopOpenfld𝑡AB
62 iccssre ABAB
63 62 3adant3 ABUAB
64 63 3ad2ant1 ABUA<BABDDF:DcnFABUFAFBAB
65 eqid topGenran.=topGenran.
66 33 65 rerest ABTopOpenfld𝑡AB=topGenran.𝑡AB
67 64 66 syl ABUA<BABDDF:DcnFABUFAFBTopOpenfld𝑡AB=topGenran.𝑡AB
68 61 67 eqtrd ABUA<BABDDF:DcnFABUFAFBTopOpenfld𝑡D𝑡AB=topGenran.𝑡AB
69 68 oveq1d ABUA<BABDDF:DcnFABUFAFBTopOpenfld𝑡D𝑡ABCnTopOpenfld=topGenran.𝑡ABCnTopOpenfld
70 55 69 eleqtrd ABUA<BABDDF:DcnFABUFAFBFABtopGenran.𝑡ABCnTopOpenfld
71 36 a1i ABUA<BABDDF:DcnFABUFAFBTopOpenfldTopOn
72 df-ima FAB=ranFAB
73 72 eqimss2i ranFABFAB
74 73 a1i ABUA<BABDDF:DcnFABUFAFBranFABFAB
75 ax-resscn
76 24 75 sstrdi ABUA<BABDDF:DcnFABUFAFBFAB
77 cnrest2 TopOpenfldTopOnranFABFABFABFABtopGenran.𝑡ABCnTopOpenfldFABtopGenran.𝑡ABCnTopOpenfld𝑡FAB
78 71 74 76 77 syl3anc ABUA<BABDDF:DcnFABUFAFBFABtopGenran.𝑡ABCnTopOpenfldFABtopGenran.𝑡ABCnTopOpenfld𝑡FAB
79 70 78 mpbid ABUA<BABDDF:DcnFABUFAFBFABtopGenran.𝑡ABCnTopOpenfld𝑡FAB
80 33 65 rerest FABTopOpenfld𝑡FAB=topGenran.𝑡FAB
81 24 80 syl ABUA<BABDDF:DcnFABUFAFBTopOpenfld𝑡FAB=topGenran.𝑡FAB
82 81 oveq2d ABUA<BABDDF:DcnFABUFAFBtopGenran.𝑡ABCnTopOpenfld𝑡FAB=topGenran.𝑡ABCntopGenran.𝑡FAB
83 79 82 eleqtrd ABUA<BABDDF:DcnFABUFAFBFABtopGenran.𝑡ABCntopGenran.𝑡FAB
84 eqid topGenran.𝑡FAB=topGenran.𝑡FAB
85 84 cnconn topGenran.𝑡ABConnFAB:ABontotopGenran.𝑡FABFABtopGenran.𝑡ABCntopGenran.𝑡FABtopGenran.𝑡FABConn
86 9 30 83 85 syl3anc ABUA<BABDDF:DcnFABUFAFBtopGenran.𝑡FABConn
87 reconn FABtopGenran.𝑡FABConnxFAByFABxyFAB
88 87 3ad2ant2 F:DcnFABUFAFBtopGenran.𝑡FABConnxFAByFABxyFAB
89 88 3ad2ant3 ABDDF:DcnFABUFAFBtopGenran.𝑡FABConnxFAByFABxyFAB
90 89 3ad2ant3 ABUA<BABDDF:DcnFABUFAFBtopGenran.𝑡FABConnxFAByFABxyFAB
91 86 90 mpbid ABUA<BABDDF:DcnFABUFAFBxFAByFABxyFAB
92 simp11 ABUA<BABDDF:DcnFABUFAFBA
93 92 rexrd ABUA<BABDDF:DcnFABUFAFBA*
94 simp12 ABUA<BABDDF:DcnFABUFAFBB
95 94 rexrd ABUA<BABDDF:DcnFABUFAFBB*
96 ltle ABA<BAB
97 96 imp ABA<BAB
98 97 3adantl3 ABUA<BAB
99 98 3adant3 ABUA<BABDDF:DcnFABUFAFBAB
100 lbicc2 A*B*ABAAB
101 93 95 99 100 syl3anc ABUA<BABDDF:DcnFABUFAFBAAB
102 funfvima2 FunFABdomFAABFAFAB
103 20 101 102 sylc ABUA<BABDDF:DcnFABUFAFBFAFAB
104 ubicc2 A*B*ABBAB
105 93 95 99 104 syl3anc ABUA<BABDDF:DcnFABUFAFBBAB
106 funfvima2 FunFABdomFBABFBFAB
107 20 105 106 sylc ABUA<BABDDF:DcnFABUFAFBFBFAB
108 oveq1 x=FAxy=FAy
109 108 sseq1d x=FAxyFABFAyFAB
110 oveq2 y=FBFAy=FAFB
111 110 sseq1d y=FBFAyFABFAFBFAB
112 109 111 rspc2v FAFABFBFABxFAByFABxyFABFAFBFAB
113 103 107 112 syl2anc ABUA<BABDDF:DcnFABUFAFBxFAByFABxyFABFAFBFAB
114 91 113 mpd ABUA<BABDDF:DcnFABUFAFBFAFBFAB
115 ioossicc FAFBFAFB
116 115 sseli UFAFBUFAFB
117 116 3ad2ant3 F:DcnFABUFAFBUFAFB
118 117 3ad2ant3 ABDDF:DcnFABUFAFBUFAFB
119 118 3ad2ant3 ABUA<BABDDF:DcnFABUFAFBUFAFB
120 114 119 sseldd ABUA<BABDDF:DcnFABUFAFBUFAB
121 fvelima FunFUFABxABFx=U
122 6 120 121 syl2anc ABUA<BABDDF:DcnFABUFAFBxABFx=U
123 simpl1 x*ABx=AA<xx<Bx=BFx=Ux*
124 123 a1i ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=Ux*
125 simprr ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=UFx=U
126 24 103 sseldd ABUA<BABDDF:DcnFABUFAFBFA
127 simp333 ABUA<BABDDF:DcnFABUFAFBUFAFB
128 126 rexrd ABUA<BABDDF:DcnFABUFAFBFA*
129 24 107 sseldd ABUA<BABDDF:DcnFABUFAFBFB
130 129 rexrd ABUA<BABDDF:DcnFABUFAFBFB*
131 elioo2 FA*FB*UFAFBUFA<UU<FB
132 128 130 131 syl2anc ABUA<BABDDF:DcnFABUFAFBUFAFBUFA<UU<FB
133 127 132 mpbid ABUA<BABDDF:DcnFABUFAFBUFA<UU<FB
134 133 simp2d ABUA<BABDDF:DcnFABUFAFBFA<U
135 126 134 gtned ABUA<BABDDF:DcnFABUFAFBUFA
136 135 adantr ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=UUFA
137 125 136 eqnetrd ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=UFxFA
138 137 neneqd ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=U¬Fx=FA
139 fveq2 x=AFx=FA
140 138 139 nsyl ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=U¬x=A
141 simp13 ABUA<BABDDF:DcnFABUFAFBU
142 133 simp3d ABUA<BABDDF:DcnFABUFAFBU<FB
143 141 142 ltned ABUA<BABDDF:DcnFABUFAFBUFB
144 143 adantr ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=UUFB
145 125 144 eqnetrd ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=UFxFB
146 145 neneqd ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=U¬Fx=FB
147 fveq2 x=BFx=FB
148 146 147 nsyl ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=U¬x=B
149 simprl3 ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=Ux=AA<xx<Bx=B
150 140 148 149 ecase13d ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=UA<xx<B
151 150 ex ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=UA<xx<B
152 124 151 jcad ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=Ux*A<xx<B
153 3anass x*A<xx<Bx*A<xx<B
154 152 153 syl6ibr ABUA<BABDDF:DcnFABUFAFBx*ABx=AA<xx<Bx=BFx=Ux*A<xx<B
155 rexr AA*
156 rexr BB*
157 elicc3 A*B*xABx*ABx=AA<xx<Bx=B
158 155 156 157 syl2an ABxABx*ABx=AA<xx<Bx=B
159 158 3adant3 ABUxABx*ABx=AA<xx<Bx=B
160 159 3ad2ant1 ABUA<BABDDF:DcnFABUFAFBxABx*ABx=AA<xx<Bx=B
161 160 anbi1d ABUA<BABDDF:DcnFABUFAFBxABFx=Ux*ABx=AA<xx<Bx=BFx=U
162 elioo1 A*B*xABx*A<xx<B
163 155 156 162 syl2an ABxABx*A<xx<B
164 163 3adant3 ABUxABx*A<xx<B
165 164 3ad2ant1 ABUA<BABDDF:DcnFABUFAFBxABx*A<xx<B
166 154 161 165 3imtr4d ABUA<BABDDF:DcnFABUFAFBxABFx=UxAB
167 simpr xABFx=UFx=U
168 167 a1i ABUA<BABDDF:DcnFABUFAFBxABFx=UFx=U
169 166 168 jcad ABUA<BABDDF:DcnFABUFAFBxABFx=UxABFx=U
170 169 reximdv2 ABUA<BABDDF:DcnFABUFAFBxABFx=UxABFx=U
171 122 170 mpd ABUA<BABDDF:DcnFABUFAFBxABFx=U