Step |
Hyp |
Ref |
Expression |
1 |
|
simp31 |
|
2 |
|
cncff |
|
3 |
1 2
|
syl |
|
4 |
|
ffun |
|
5 |
3 4
|
syl |
|
6 |
5
|
3ad2ant3 |
|
7 |
|
iccconn |
|
8 |
7
|
3adant3 |
|
9 |
8
|
3ad2ant1 |
|
10 |
|
simpr1 |
|
11 |
10 2
|
syl |
|
12 |
11
|
anim2i |
|
13 |
12
|
3impb |
|
14 |
13
|
3ad2ant3 |
|
15 |
4
|
adantl |
|
16 |
|
fdm |
|
17 |
16
|
sseq2d |
|
18 |
17
|
biimparc |
|
19 |
15 18
|
jca |
|
20 |
14 19
|
syl |
|
21 |
|
fores |
|
22 |
20 21
|
syl |
|
23 |
|
retop |
|
24 |
|
simp332 |
|
25 |
|
uniretop |
|
26 |
25
|
restuni |
|
27 |
23 24 26
|
sylancr |
|
28 |
|
foeq3 |
|
29 |
27 28
|
syl |
|
30 |
22 29
|
mpbid |
|
31 |
|
simp331 |
|
32 |
|
ssid |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
33
|
cnfldtop |
|
36 |
33
|
cnfldtopon |
|
37 |
36
|
toponunii |
|
38 |
37
|
restid |
|
39 |
35 38
|
ax-mp |
|
40 |
39
|
eqcomi |
|
41 |
33 34 40
|
cncfcn |
|
42 |
32 41
|
mpan2 |
|
43 |
42
|
3ad2ant2 |
|
44 |
43
|
3ad2ant3 |
|
45 |
31 44
|
eleqtrd |
|
46 |
|
simp31 |
|
47 |
|
simp32 |
|
48 |
|
resttopon |
|
49 |
36 47 48
|
sylancr |
|
50 |
|
toponuni |
|
51 |
49 50
|
syl |
|
52 |
46 51
|
sseqtrd |
|
53 |
|
eqid |
|
54 |
53
|
cnrest |
|
55 |
45 52 54
|
syl2anc |
|
56 |
35
|
a1i |
|
57 |
|
cnex |
|
58 |
|
ssexg |
|
59 |
47 57 58
|
sylancl |
|
60 |
|
restabs |
|
61 |
56 46 59 60
|
syl3anc |
|
62 |
|
iccssre |
|
63 |
62
|
3adant3 |
|
64 |
63
|
3ad2ant1 |
|
65 |
|
eqid |
|
66 |
33 65
|
rerest |
|
67 |
64 66
|
syl |
|
68 |
61 67
|
eqtrd |
|
69 |
68
|
oveq1d |
|
70 |
55 69
|
eleqtrd |
|
71 |
36
|
a1i |
|
72 |
|
df-ima |
|
73 |
72
|
eqimss2i |
|
74 |
73
|
a1i |
|
75 |
|
ax-resscn |
|
76 |
24 75
|
sstrdi |
|
77 |
|
cnrest2 |
|
78 |
71 74 76 77
|
syl3anc |
|
79 |
70 78
|
mpbid |
|
80 |
33 65
|
rerest |
|
81 |
24 80
|
syl |
|
82 |
81
|
oveq2d |
|
83 |
79 82
|
eleqtrd |
|
84 |
|
eqid |
|
85 |
84
|
cnconn |
|
86 |
9 30 83 85
|
syl3anc |
|
87 |
|
reconn |
|
88 |
87
|
3ad2ant2 |
|
89 |
88
|
3ad2ant3 |
|
90 |
89
|
3ad2ant3 |
|
91 |
86 90
|
mpbid |
|
92 |
|
simp11 |
|
93 |
92
|
rexrd |
|
94 |
|
simp12 |
|
95 |
94
|
rexrd |
|
96 |
|
ltle |
|
97 |
96
|
imp |
|
98 |
97
|
3adantl3 |
|
99 |
98
|
3adant3 |
|
100 |
|
lbicc2 |
|
101 |
93 95 99 100
|
syl3anc |
|
102 |
|
funfvima2 |
|
103 |
20 101 102
|
sylc |
|
104 |
|
ubicc2 |
|
105 |
93 95 99 104
|
syl3anc |
|
106 |
|
funfvima2 |
|
107 |
20 105 106
|
sylc |
|
108 |
|
oveq1 |
|
109 |
108
|
sseq1d |
|
110 |
|
oveq2 |
|
111 |
110
|
sseq1d |
|
112 |
109 111
|
rspc2v |
|
113 |
103 107 112
|
syl2anc |
|
114 |
91 113
|
mpd |
|
115 |
|
ioossicc |
|
116 |
115
|
sseli |
|
117 |
116
|
3ad2ant3 |
|
118 |
117
|
3ad2ant3 |
|
119 |
118
|
3ad2ant3 |
|
120 |
114 119
|
sseldd |
|
121 |
|
fvelima |
|
122 |
6 120 121
|
syl2anc |
|
123 |
|
simpl1 |
|
124 |
123
|
a1i |
|
125 |
|
simprr |
|
126 |
24 103
|
sseldd |
|
127 |
|
simp333 |
|
128 |
126
|
rexrd |
|
129 |
24 107
|
sseldd |
|
130 |
129
|
rexrd |
|
131 |
|
elioo2 |
|
132 |
128 130 131
|
syl2anc |
|
133 |
127 132
|
mpbid |
|
134 |
133
|
simp2d |
|
135 |
126 134
|
gtned |
|
136 |
135
|
adantr |
|
137 |
125 136
|
eqnetrd |
|
138 |
137
|
neneqd |
|
139 |
|
fveq2 |
|
140 |
138 139
|
nsyl |
|
141 |
|
simp13 |
|
142 |
133
|
simp3d |
|
143 |
141 142
|
ltned |
|
144 |
143
|
adantr |
|
145 |
125 144
|
eqnetrd |
|
146 |
145
|
neneqd |
|
147 |
|
fveq2 |
|
148 |
146 147
|
nsyl |
|
149 |
|
simprl3 |
|
150 |
140 148 149
|
ecase13d |
|
151 |
150
|
ex |
|
152 |
124 151
|
jcad |
|
153 |
|
3anass |
|
154 |
152 153
|
syl6ibr |
|
155 |
|
rexr |
|
156 |
|
rexr |
|
157 |
|
elicc3 |
|
158 |
155 156 157
|
syl2an |
|
159 |
158
|
3adant3 |
|
160 |
159
|
3ad2ant1 |
|
161 |
160
|
anbi1d |
|
162 |
|
elioo1 |
|
163 |
155 156 162
|
syl2an |
|
164 |
163
|
3adant3 |
|
165 |
164
|
3ad2ant1 |
|
166 |
154 161 165
|
3imtr4d |
|
167 |
|
simpr |
|
168 |
167
|
a1i |
|
169 |
166 168
|
jcad |
|
170 |
169
|
reximdv2 |
|
171 |
122 170
|
mpd |
|