Metamath Proof Explorer


Theorem ivthALT

Description: An alternate proof of the Intermediate Value Theorem ivth using topology. (Contributed by Jeff Hankins, 17-Aug-2009) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ivthALT A B U A < B A B D D F : D cn F A B U F A F B x A B F x = U

Proof

Step Hyp Ref Expression
1 simp31 A B D D F : D cn F A B U F A F B F : D cn
2 cncff F : D cn F : D
3 1 2 syl A B D D F : D cn F A B U F A F B F : D
4 ffun F : D Fun F
5 3 4 syl A B D D F : D cn F A B U F A F B Fun F
6 5 3ad2ant3 A B U A < B A B D D F : D cn F A B U F A F B Fun F
7 iccconn A B topGen ran . 𝑡 A B Conn
8 7 3adant3 A B U topGen ran . 𝑡 A B Conn
9 8 3ad2ant1 A B U A < B A B D D F : D cn F A B U F A F B topGen ran . 𝑡 A B Conn
10 simpr1 D F : D cn F A B U F A F B F : D cn
11 10 2 syl D F : D cn F A B U F A F B F : D
12 11 anim2i A B D D F : D cn F A B U F A F B A B D F : D
13 12 3impb A B D D F : D cn F A B U F A F B A B D F : D
14 13 3ad2ant3 A B U A < B A B D D F : D cn F A B U F A F B A B D F : D
15 4 adantl A B D F : D Fun F
16 fdm F : D dom F = D
17 16 sseq2d F : D A B dom F A B D
18 17 biimparc A B D F : D A B dom F
19 15 18 jca A B D F : D Fun F A B dom F
20 14 19 syl A B U A < B A B D D F : D cn F A B U F A F B Fun F A B dom F
21 fores Fun F A B dom F F A B : A B onto F A B
22 20 21 syl A B U A < B A B D D F : D cn F A B U F A F B F A B : A B onto F A B
23 retop topGen ran . Top
24 simp332 A B U A < B A B D D F : D cn F A B U F A F B F A B
25 uniretop = topGen ran .
26 25 restuni topGen ran . Top F A B F A B = topGen ran . 𝑡 F A B
27 23 24 26 sylancr A B U A < B A B D D F : D cn F A B U F A F B F A B = topGen ran . 𝑡 F A B
28 foeq3 F A B = topGen ran . 𝑡 F A B F A B : A B onto F A B F A B : A B onto topGen ran . 𝑡 F A B
29 27 28 syl A B U A < B A B D D F : D cn F A B U F A F B F A B : A B onto F A B F A B : A B onto topGen ran . 𝑡 F A B
30 22 29 mpbid A B U A < B A B D D F : D cn F A B U F A F B F A B : A B onto topGen ran . 𝑡 F A B
31 simp331 A B U A < B A B D D F : D cn F A B U F A F B F : D cn
32 ssid
33 eqid TopOpen fld = TopOpen fld
34 eqid TopOpen fld 𝑡 D = TopOpen fld 𝑡 D
35 33 cnfldtop TopOpen fld Top
36 33 cnfldtopon TopOpen fld TopOn
37 36 toponunii = TopOpen fld
38 37 restid TopOpen fld Top TopOpen fld 𝑡 = TopOpen fld
39 35 38 ax-mp TopOpen fld 𝑡 = TopOpen fld
40 39 eqcomi TopOpen fld = TopOpen fld 𝑡
41 33 34 40 cncfcn D D cn = TopOpen fld 𝑡 D Cn TopOpen fld
42 32 41 mpan2 D D cn = TopOpen fld 𝑡 D Cn TopOpen fld
43 42 3ad2ant2 A B D D F : D cn F A B U F A F B D cn = TopOpen fld 𝑡 D Cn TopOpen fld
44 43 3ad2ant3 A B U A < B A B D D F : D cn F A B U F A F B D cn = TopOpen fld 𝑡 D Cn TopOpen fld
45 31 44 eleqtrd A B U A < B A B D D F : D cn F A B U F A F B F TopOpen fld 𝑡 D Cn TopOpen fld
46 simp31 A B U A < B A B D D F : D cn F A B U F A F B A B D
47 simp32 A B U A < B A B D D F : D cn F A B U F A F B D
48 resttopon TopOpen fld TopOn D TopOpen fld 𝑡 D TopOn D
49 36 47 48 sylancr A B U A < B A B D D F : D cn F A B U F A F B TopOpen fld 𝑡 D TopOn D
50 toponuni TopOpen fld 𝑡 D TopOn D D = TopOpen fld 𝑡 D
51 49 50 syl A B U A < B A B D D F : D cn F A B U F A F B D = TopOpen fld 𝑡 D
52 46 51 sseqtrd A B U A < B A B D D F : D cn F A B U F A F B A B TopOpen fld 𝑡 D
53 eqid TopOpen fld 𝑡 D = TopOpen fld 𝑡 D
54 53 cnrest F TopOpen fld 𝑡 D Cn TopOpen fld A B TopOpen fld 𝑡 D F A B TopOpen fld 𝑡 D 𝑡 A B Cn TopOpen fld
55 45 52 54 syl2anc A B U A < B A B D D F : D cn F A B U F A F B F A B TopOpen fld 𝑡 D 𝑡 A B Cn TopOpen fld
56 35 a1i A B U A < B A B D D F : D cn F A B U F A F B TopOpen fld Top
57 cnex V
58 ssexg D V D V
59 47 57 58 sylancl A B U A < B A B D D F : D cn F A B U F A F B D V
60 restabs TopOpen fld Top A B D D V TopOpen fld 𝑡 D 𝑡 A B = TopOpen fld 𝑡 A B
61 56 46 59 60 syl3anc A B U A < B A B D D F : D cn F A B U F A F B TopOpen fld 𝑡 D 𝑡 A B = TopOpen fld 𝑡 A B
62 iccssre A B A B
63 62 3adant3 A B U A B
64 63 3ad2ant1 A B U A < B A B D D F : D cn F A B U F A F B A B
65 eqid topGen ran . = topGen ran .
66 33 65 rerest A B TopOpen fld 𝑡 A B = topGen ran . 𝑡 A B
67 64 66 syl A B U A < B A B D D F : D cn F A B U F A F B TopOpen fld 𝑡 A B = topGen ran . 𝑡 A B
68 61 67 eqtrd A B U A < B A B D D F : D cn F A B U F A F B TopOpen fld 𝑡 D 𝑡 A B = topGen ran . 𝑡 A B
69 68 oveq1d A B U A < B A B D D F : D cn F A B U F A F B TopOpen fld 𝑡 D 𝑡 A B Cn TopOpen fld = topGen ran . 𝑡 A B Cn TopOpen fld
70 55 69 eleqtrd A B U A < B A B D D F : D cn F A B U F A F B F A B topGen ran . 𝑡 A B Cn TopOpen fld
71 36 a1i A B U A < B A B D D F : D cn F A B U F A F B TopOpen fld TopOn
72 df-ima F A B = ran F A B
73 72 eqimss2i ran F A B F A B
74 73 a1i A B U A < B A B D D F : D cn F A B U F A F B ran F A B F A B
75 ax-resscn
76 24 75 sstrdi A B U A < B A B D D F : D cn F A B U F A F B F A B
77 cnrest2 TopOpen fld TopOn ran F A B F A B F A B F A B topGen ran . 𝑡 A B Cn TopOpen fld F A B topGen ran . 𝑡 A B Cn TopOpen fld 𝑡 F A B
78 71 74 76 77 syl3anc A B U A < B A B D D F : D cn F A B U F A F B F A B topGen ran . 𝑡 A B Cn TopOpen fld F A B topGen ran . 𝑡 A B Cn TopOpen fld 𝑡 F A B
79 70 78 mpbid A B U A < B A B D D F : D cn F A B U F A F B F A B topGen ran . 𝑡 A B Cn TopOpen fld 𝑡 F A B
80 33 65 rerest F A B TopOpen fld 𝑡 F A B = topGen ran . 𝑡 F A B
81 24 80 syl A B U A < B A B D D F : D cn F A B U F A F B TopOpen fld 𝑡 F A B = topGen ran . 𝑡 F A B
82 81 oveq2d A B U A < B A B D D F : D cn F A B U F A F B topGen ran . 𝑡 A B Cn TopOpen fld 𝑡 F A B = topGen ran . 𝑡 A B Cn topGen ran . 𝑡 F A B
83 79 82 eleqtrd A B U A < B A B D D F : D cn F A B U F A F B F A B topGen ran . 𝑡 A B Cn topGen ran . 𝑡 F A B
84 eqid topGen ran . 𝑡 F A B = topGen ran . 𝑡 F A B
85 84 cnconn topGen ran . 𝑡 A B Conn F A B : A B onto topGen ran . 𝑡 F A B F A B topGen ran . 𝑡 A B Cn topGen ran . 𝑡 F A B topGen ran . 𝑡 F A B Conn
86 9 30 83 85 syl3anc A B U A < B A B D D F : D cn F A B U F A F B topGen ran . 𝑡 F A B Conn
87 reconn F A B topGen ran . 𝑡 F A B Conn x F A B y F A B x y F A B
88 87 3ad2ant2 F : D cn F A B U F A F B topGen ran . 𝑡 F A B Conn x F A B y F A B x y F A B
89 88 3ad2ant3 A B D D F : D cn F A B U F A F B topGen ran . 𝑡 F A B Conn x F A B y F A B x y F A B
90 89 3ad2ant3 A B U A < B A B D D F : D cn F A B U F A F B topGen ran . 𝑡 F A B Conn x F A B y F A B x y F A B
91 86 90 mpbid A B U A < B A B D D F : D cn F A B U F A F B x F A B y F A B x y F A B
92 simp11 A B U A < B A B D D F : D cn F A B U F A F B A
93 92 rexrd A B U A < B A B D D F : D cn F A B U F A F B A *
94 simp12 A B U A < B A B D D F : D cn F A B U F A F B B
95 94 rexrd A B U A < B A B D D F : D cn F A B U F A F B B *
96 ltle A B A < B A B
97 96 imp A B A < B A B
98 97 3adantl3 A B U A < B A B
99 98 3adant3 A B U A < B A B D D F : D cn F A B U F A F B A B
100 lbicc2 A * B * A B A A B
101 93 95 99 100 syl3anc A B U A < B A B D D F : D cn F A B U F A F B A A B
102 funfvima2 Fun F A B dom F A A B F A F A B
103 20 101 102 sylc A B U A < B A B D D F : D cn F A B U F A F B F A F A B
104 ubicc2 A * B * A B B A B
105 93 95 99 104 syl3anc A B U A < B A B D D F : D cn F A B U F A F B B A B
106 funfvima2 Fun F A B dom F B A B F B F A B
107 20 105 106 sylc A B U A < B A B D D F : D cn F A B U F A F B F B F A B
108 oveq1 x = F A x y = F A y
109 108 sseq1d x = F A x y F A B F A y F A B
110 oveq2 y = F B F A y = F A F B
111 110 sseq1d y = F B F A y F A B F A F B F A B
112 109 111 rspc2v F A F A B F B F A B x F A B y F A B x y F A B F A F B F A B
113 103 107 112 syl2anc A B U A < B A B D D F : D cn F A B U F A F B x F A B y F A B x y F A B F A F B F A B
114 91 113 mpd A B U A < B A B D D F : D cn F A B U F A F B F A F B F A B
115 ioossicc F A F B F A F B
116 115 sseli U F A F B U F A F B
117 116 3ad2ant3 F : D cn F A B U F A F B U F A F B
118 117 3ad2ant3 A B D D F : D cn F A B U F A F B U F A F B
119 118 3ad2ant3 A B U A < B A B D D F : D cn F A B U F A F B U F A F B
120 114 119 sseldd A B U A < B A B D D F : D cn F A B U F A F B U F A B
121 fvelima Fun F U F A B x A B F x = U
122 6 120 121 syl2anc A B U A < B A B D D F : D cn F A B U F A F B x A B F x = U
123 simpl1 x * A B x = A A < x x < B x = B F x = U x *
124 123 a1i A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U x *
125 simprr A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U F x = U
126 24 103 sseldd A B U A < B A B D D F : D cn F A B U F A F B F A
127 simp333 A B U A < B A B D D F : D cn F A B U F A F B U F A F B
128 126 rexrd A B U A < B A B D D F : D cn F A B U F A F B F A *
129 24 107 sseldd A B U A < B A B D D F : D cn F A B U F A F B F B
130 129 rexrd A B U A < B A B D D F : D cn F A B U F A F B F B *
131 elioo2 F A * F B * U F A F B U F A < U U < F B
132 128 130 131 syl2anc A B U A < B A B D D F : D cn F A B U F A F B U F A F B U F A < U U < F B
133 127 132 mpbid A B U A < B A B D D F : D cn F A B U F A F B U F A < U U < F B
134 133 simp2d A B U A < B A B D D F : D cn F A B U F A F B F A < U
135 126 134 gtned A B U A < B A B D D F : D cn F A B U F A F B U F A
136 135 adantr A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U U F A
137 125 136 eqnetrd A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U F x F A
138 137 neneqd A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U ¬ F x = F A
139 fveq2 x = A F x = F A
140 138 139 nsyl A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U ¬ x = A
141 simp13 A B U A < B A B D D F : D cn F A B U F A F B U
142 133 simp3d A B U A < B A B D D F : D cn F A B U F A F B U < F B
143 141 142 ltned A B U A < B A B D D F : D cn F A B U F A F B U F B
144 143 adantr A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U U F B
145 125 144 eqnetrd A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U F x F B
146 145 neneqd A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U ¬ F x = F B
147 fveq2 x = B F x = F B
148 146 147 nsyl A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U ¬ x = B
149 simprl3 A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U x = A A < x x < B x = B
150 140 148 149 ecase13d A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U A < x x < B
151 150 ex A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U A < x x < B
152 124 151 jcad A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U x * A < x x < B
153 3anass x * A < x x < B x * A < x x < B
154 152 153 syl6ibr A B U A < B A B D D F : D cn F A B U F A F B x * A B x = A A < x x < B x = B F x = U x * A < x x < B
155 rexr A A *
156 rexr B B *
157 elicc3 A * B * x A B x * A B x = A A < x x < B x = B
158 155 156 157 syl2an A B x A B x * A B x = A A < x x < B x = B
159 158 3adant3 A B U x A B x * A B x = A A < x x < B x = B
160 159 3ad2ant1 A B U A < B A B D D F : D cn F A B U F A F B x A B x * A B x = A A < x x < B x = B
161 160 anbi1d A B U A < B A B D D F : D cn F A B U F A F B x A B F x = U x * A B x = A A < x x < B x = B F x = U
162 elioo1 A * B * x A B x * A < x x < B
163 155 156 162 syl2an A B x A B x * A < x x < B
164 163 3adant3 A B U x A B x * A < x x < B
165 164 3ad2ant1 A B U A < B A B D D F : D cn F A B U F A F B x A B x * A < x x < B
166 154 161 165 3imtr4d A B U A < B A B D D F : D cn F A B U F A F B x A B F x = U x A B
167 simpr x A B F x = U F x = U
168 167 a1i A B U A < B A B D D F : D cn F A B U F A F B x A B F x = U F x = U
169 166 168 jcad A B U A < B A B D D F : D cn F A B U F A F B x A B F x = U x A B F x = U
170 169 reximdv2 A B U A < B A B D D F : D cn F A B U F A F B x A B F x = U x A B F x = U
171 122 170 mpd A B U A < B A B D D F : D cn F A B U F A F B x A B F x = U