Metamath Proof Explorer


Theorem ivthlem3

Description: Lemma for ivth , the intermediate value theorem. Show that ( FC ) cannot be greater than U , and so establish the existence of a root of the function. (Contributed by Mario Carneiro, 30-Apr-2014) (Revised by Mario Carneiro, 17-Jun-2014)

Ref Expression
Hypotheses ivth.1 φA
ivth.2 φB
ivth.3 φU
ivth.4 φA<B
ivth.5 φABD
ivth.7 φF:Dcn
ivth.8 φxABFx
ivth.9 φFA<UU<FB
ivth.10 S=xAB|FxU
ivth.11 C=supS<
Assertion ivthlem3 φCABFC=U

Proof

Step Hyp Ref Expression
1 ivth.1 φA
2 ivth.2 φB
3 ivth.3 φU
4 ivth.4 φA<B
5 ivth.5 φABD
6 ivth.7 φF:Dcn
7 ivth.8 φxABFx
8 ivth.9 φFA<UU<FB
9 ivth.10 S=xAB|FxU
10 ivth.11 C=supS<
11 9 ssrab3 SAB
12 iccssre ABAB
13 1 2 12 syl2anc φAB
14 11 13 sstrid φS
15 1 2 3 4 5 6 7 8 9 ivthlem1 φASzSzB
16 15 simpld φAS
17 16 ne0d φS
18 15 simprd φzSzB
19 brralrspcev BzSzBxzSzx
20 2 18 19 syl2anc φxzSzx
21 14 17 20 suprcld φsupS<
22 10 21 eqeltrid φC
23 8 simpld φFA<U
24 1 2 3 4 5 6 7 8 9 10 ivthlem2 φ¬FC<U
25 6 adantr φU<FCF:Dcn
26 14 17 20 16 suprubd φAsupS<
27 26 10 breqtrrdi φAC
28 14 17 20 3jca φSSxzSzx
29 suprleub SSxzSzxBsupS<BzSzB
30 28 2 29 syl2anc φsupS<BzSzB
31 18 30 mpbird φsupS<B
32 10 31 eqbrtrid φCB
33 elicc2 ABCABCACCB
34 1 2 33 syl2anc φCABCACCB
35 22 27 32 34 mpbir3and φCAB
36 5 35 sseldd φCD
37 36 adantr φU<FCCD
38 fveq2 x=CFx=FC
39 38 eleq1d x=CFxFC
40 7 ralrimiva φxABFx
41 39 40 35 rspcdva φFC
42 difrp UFCU<FCFCU+
43 3 41 42 syl2anc φU<FCFCU+
44 43 biimpa φU<FCFCU+
45 cncfi F:DcnCDFCU+z+yDyC<zFyFC<FCU
46 25 37 44 45 syl3anc φU<FCz+yDyC<zFyFC<FCU
47 ssralv ABDyDyC<zFyFC<FCUyAByC<zFyFC<FCU
48 5 47 syl φyDyC<zFyFC<FCUyAByC<zFyFC<FCU
49 48 ad2antrr φU<FCz+yDyC<zFyFC<FCUyAByC<zFyFC<FCU
50 22 ad2antrr φU<FCz+C
51 ltsubrp Cz+Cz<C
52 50 51 sylancom φU<FCz+Cz<C
53 52 10 breqtrdi φU<FCz+Cz<supS<
54 28 ad2antrr φU<FCz+SSxzSzx
55 rpre z+z
56 55 adantl φU<FCz+z
57 50 56 resubcld φU<FCz+Cz
58 suprlub SSxzSzxCzCz<supS<ySCz<y
59 54 57 58 syl2anc φU<FCz+Cz<supS<ySCz<y
60 53 59 mpbid φU<FCz+ySCz<y
61 11 sseli ySyAB
62 61 ad2antrl φU<FCz+ySCz<yyAB
63 simplll φU<FCz+ySCz<yφ
64 63 13 syl φU<FCz+ySCz<yAB
65 64 62 sseldd φU<FCz+ySCz<yy
66 63 22 syl φU<FCz+ySCz<yC
67 63 28 syl φU<FCz+ySCz<ySSxzSzx
68 simprl φU<FCz+ySCz<yyS
69 suprub SSxzSzxySysupS<
70 67 68 69 syl2anc φU<FCz+ySCz<yysupS<
71 70 10 breqtrrdi φU<FCz+ySCz<yyC
72 65 66 71 abssuble0d φU<FCz+ySCz<yyC=Cy
73 56 adantr φU<FCz+ySCz<yz
74 simprr φU<FCz+ySCz<yCz<y
75 66 73 65 74 ltsub23d φU<FCz+ySCz<yCy<z
76 72 75 eqbrtrd φU<FCz+ySCz<yyC<z
77 62 76 68 jca32 φU<FCz+ySCz<yyAByC<zyS
78 77 ex φU<FCz+ySCz<yyAByC<zyS
79 78 reximdv2 φU<FCz+ySCz<yyAByC<zyS
80 60 79 mpd φU<FCz+yAByC<zyS
81 r19.29 yAByC<zFyFC<FCUyAByC<zySyAByC<zFyFC<FCUyC<zyS
82 pm3.45 yC<zFyFC<FCUyC<zySFyFC<FCUyS
83 82 imp yC<zFyFC<FCUyC<zySFyFC<FCUyS
84 fveq2 x=yFx=Fy
85 84 eleq1d x=yFxFy
86 40 ad2antrr φU<FCz+ySxABFx
87 61 ad2antll φU<FCz+ySyAB
88 85 86 87 rspcdva φU<FCz+ySFy
89 41 ad2antrr φU<FCz+ySFC
90 3 ad2antrr φU<FCz+ySU
91 89 90 resubcld φU<FCz+ySFCU
92 88 89 91 absdifltd φU<FCz+ySFyFC<FCUFCFCU<FyFy<FC+FC-U
93 89 recnd φU<FCz+ySFC
94 90 recnd φU<FCz+ySU
95 93 94 nncand φU<FCz+ySFCFCU=U
96 95 breq1d φU<FCz+ySFCFCU<FyU<Fy
97 84 breq1d x=yFxUFyU
98 97 9 elrab2 ySyABFyU
99 98 simprbi ySFyU
100 99 ad2antll φU<FCz+ySFyU
101 88 90 100 lensymd φU<FCz+yS¬U<Fy
102 101 pm2.21d φU<FCz+ySU<Fy¬U<FC
103 96 102 sylbid φU<FCz+ySFCFCU<Fy¬U<FC
104 103 adantrd φU<FCz+ySFCFCU<FyFy<FC+FC-U¬U<FC
105 92 104 sylbid φU<FCz+ySFyFC<FCU¬U<FC
106 105 expr φU<FCz+ySFyFC<FCU¬U<FC
107 106 impcomd φU<FCz+FyFC<FCUyS¬U<FC
108 107 adantr φU<FCz+yABFyFC<FCUyS¬U<FC
109 83 108 syl5 φU<FCz+yAByC<zFyFC<FCUyC<zyS¬U<FC
110 109 rexlimdva φU<FCz+yAByC<zFyFC<FCUyC<zyS¬U<FC
111 81 110 syl5 φU<FCz+yAByC<zFyFC<FCUyAByC<zyS¬U<FC
112 80 111 mpan2d φU<FCz+yAByC<zFyFC<FCU¬U<FC
113 49 112 syld φU<FCz+yDyC<zFyFC<FCU¬U<FC
114 113 rexlimdva φU<FCz+yDyC<zFyFC<FCU¬U<FC
115 46 114 mpd φU<FC¬U<FC
116 115 pm2.01da φ¬U<FC
117 41 3 lttri3d φFC=U¬FC<U¬U<FC
118 24 116 117 mpbir2and φFC=U
119 23 118 breqtrrd φFA<FC
120 41 ltnrd φ¬FC<FC
121 fveq2 C=AFC=FA
122 121 breq1d C=AFC<FCFA<FC
123 122 notbid C=A¬FC<FC¬FA<FC
124 120 123 syl5ibcom φC=A¬FA<FC
125 124 necon2ad φFA<FCCA
126 125 27 jctild φFA<FCACCA
127 1 22 ltlend φA<CACCA
128 126 127 sylibrd φFA<FCA<C
129 119 128 mpd φA<C
130 8 simprd φU<FB
131 118 130 eqbrtrd φFC<FB
132 fveq2 B=CFB=FC
133 132 breq2d B=CFC<FBFC<FC
134 133 notbid B=C¬FC<FB¬FC<FC
135 120 134 syl5ibrcom φB=C¬FC<FB
136 135 necon2ad φFC<FBBC
137 136 32 jctild φFC<FBCBBC
138 22 2 ltlend φC<BCBBC
139 137 138 sylibrd φFC<FBC<B
140 131 139 mpd φC<B
141 1 rexrd φA*
142 2 rexrd φB*
143 elioo2 A*B*CABCA<CC<B
144 141 142 143 syl2anc φCABCA<CC<B
145 22 129 140 144 mpbir3and φCAB
146 145 118 jca φCABFC=U