Metamath Proof Explorer


Theorem ldepspr

Description: If a vector is a scalar multiple of another vector, the (unordered pair containing the) two vectors are linearly dependent. (Contributed by AV, 16-Apr-2019) (Revised by AV, 27-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Hypotheses snlindsntor.b B=BaseM
snlindsntor.r R=ScalarM
snlindsntor.s S=BaseR
snlindsntor.0 0˙=0R
snlindsntor.z Z=0M
snlindsntor.t ·˙=M
Assertion ldepspr MLModXBYBXYASX=A·˙YXYlinDepSM

Proof

Step Hyp Ref Expression
1 snlindsntor.b B=BaseM
2 snlindsntor.r R=ScalarM
3 snlindsntor.s S=BaseR
4 snlindsntor.0 0˙=0R
5 snlindsntor.z Z=0M
6 snlindsntor.t ·˙=M
7 3simpa XBYBXYXBYB
8 7 ad2antlr MLModXBYBXYASX=A·˙YXBYB
9 fvex 1RV
10 fvex invgRAV
11 9 10 pm3.2i 1RVinvgRAV
12 11 a1i MLModXBYBXYASX=A·˙Y1RVinvgRAV
13 simp3 XBYBXYXY
14 13 ad2antlr MLModXBYBXYASX=A·˙YXY
15 fprg XBYB1RVinvgRAVXYX1RYinvgRA:XY1RinvgRA
16 8 12 14 15 syl3anc MLModXBYBXYASX=A·˙YX1RYinvgRA:XY1RinvgRA
17 prfi XYFin
18 17 a1i MLModXBYBXYASX=A·˙YXYFin
19 4 fvexi 0˙V
20 19 a1i MLModXBYBXYASX=A·˙Y0˙V
21 16 18 20 fdmfifsupp MLModXBYBXYASX=A·˙YfinSupp0˙X1RYinvgRA
22 13 anim2i MLModXBYBXYMLModXY
23 22 adantr MLModXBYBXYASX=A·˙YMLModXY
24 eqid 1R=1R
25 2 3 24 lmod1cl MLMod1RS
26 simp1 XBYBXYXB
27 25 26 anim12ci MLModXBYBXYXB1RS
28 27 adantr MLModXBYBXYASX=A·˙YXB1RS
29 simp2 XBYBXYYB
30 29 ad2antlr MLModXBYBXYASX=A·˙YYB
31 2 lmodfgrp MLModRGrp
32 31 adantr MLModXBYBXYRGrp
33 simpl ASX=A·˙YAS
34 eqid invgR=invgR
35 3 34 grpinvcl RGrpASinvgRAS
36 32 33 35 syl2an MLModXBYBXYASX=A·˙YinvgRAS
37 eqid +M=+M
38 eqid X1RYinvgRA=X1RYinvgRA
39 1 2 3 6 37 38 lincvalpr MLModXYXB1RSYBinvgRASX1RYinvgRAlinCMXY=1R·˙X+MinvgRA·˙Y
40 23 28 30 36 39 syl112anc MLModXBYBXYASX=A·˙YX1RYinvgRAlinCMXY=1R·˙X+MinvgRA·˙Y
41 simpll MLModXBYBXYASX=A·˙YMLMod
42 26 ad2antlr MLModXBYBXYASX=A·˙YXB
43 33 adantl MLModXBYBXYASX=A·˙YAS
44 42 30 43 3jca MLModXBYBXYASX=A·˙YXBYBAS
45 41 44 jca MLModXBYBXYASX=A·˙YMLModXBYBAS
46 simprr MLModXBYBXYASX=A·˙YX=A·˙Y
47 1 2 3 4 5 6 24 34 ldepsprlem MLModXBYBASX=A·˙Y1R·˙X+MinvgRA·˙Y=Z
48 45 46 47 sylc MLModXBYBXYASX=A·˙Y1R·˙X+MinvgRA·˙Y=Z
49 40 48 eqtrd MLModXBYBXYASX=A·˙YX1RYinvgRAlinCMXY=Z
50 2 lmodring MLModRRing
51 eqcom 1R=0R0R=1R
52 eqid 0R=0R
53 3 52 24 01eq0ring RRing0R=1RS=0R
54 sneq 0R=1R0R=1R
55 54 eqeq2d 0R=1RS=0RS=1R
56 eleq2 S=1RASA1R
57 elsni A1RA=1R
58 oveq1 A=1RA·˙Y=1R·˙Y
59 58 eqeq2d A=1RX=A·˙YX=1R·˙Y
60 29 anim1i XBYBXYMLModYBMLMod
61 60 ancomd XBYBXYMLModMLModYB
62 1 2 6 24 lmodvs1 MLModYB1R·˙Y=Y
63 61 62 syl XBYBXYMLMod1R·˙Y=Y
64 63 eqeq2d XBYBXYMLModX=1R·˙YX=Y
65 eqneqall X=YXY¬1R=0RinvgRA0˙
66 65 com12 XYX=Y¬1R=0RinvgRA0˙
67 66 3ad2ant3 XBYBXYX=Y¬1R=0RinvgRA0˙
68 67 adantr XBYBXYMLModX=Y¬1R=0RinvgRA0˙
69 64 68 sylbid XBYBXYMLModX=1R·˙Y¬1R=0RinvgRA0˙
70 69 ex XBYBXYMLModX=1R·˙Y¬1R=0RinvgRA0˙
71 70 com3r X=1R·˙YXBYBXYMLMod¬1R=0RinvgRA0˙
72 59 71 syl6bi A=1RX=A·˙YXBYBXYMLMod¬1R=0RinvgRA0˙
73 57 72 syl A1RX=A·˙YXBYBXYMLMod¬1R=0RinvgRA0˙
74 56 73 syl6bi S=1RASX=A·˙YXBYBXYMLMod¬1R=0RinvgRA0˙
75 74 impd S=1RASX=A·˙YXBYBXYMLMod¬1R=0RinvgRA0˙
76 75 com23 S=1RXBYBXYASX=A·˙YMLMod¬1R=0RinvgRA0˙
77 55 76 syl6bi 0R=1RS=0RXBYBXYASX=A·˙YMLMod¬1R=0RinvgRA0˙
78 77 adantl RRing0R=1RS=0RXBYBXYASX=A·˙YMLMod¬1R=0RinvgRA0˙
79 53 78 mpd RRing0R=1RXBYBXYASX=A·˙YMLMod¬1R=0RinvgRA0˙
80 79 ex RRing0R=1RXBYBXYASX=A·˙YMLMod¬1R=0RinvgRA0˙
81 51 80 biimtrid RRing1R=0RXBYBXYASX=A·˙YMLMod¬1R=0RinvgRA0˙
82 81 com25 RRingMLModXBYBXYASX=A·˙Y1R=0R¬1R=0RinvgRA0˙
83 50 82 mpcom MLModXBYBXYASX=A·˙Y1R=0R¬1R=0RinvgRA0˙
84 83 imp31 MLModXBYBXYASX=A·˙Y1R=0R¬1R=0RinvgRA0˙
85 orc ¬1R=0R¬1R=0RinvgRA0˙
86 84 85 pm2.61d1 MLModXBYBXYASX=A·˙Y¬1R=0RinvgRA0˙
87 4 eqeq2i 1R=0˙1R=0R
88 87 necon3abii 1R0˙¬1R=0R
89 88 orbi1i 1R0˙invgRA0˙¬1R=0RinvgRA0˙
90 86 89 sylibr MLModXBYBXYASX=A·˙Y1R0˙invgRA0˙
91 fvexd MLModXBYBXYASX=A·˙Y1RV
92 fvpr1g XB1RVXYX1RYinvgRAX=1R
93 42 91 14 92 syl3anc MLModXBYBXYASX=A·˙YX1RYinvgRAX=1R
94 93 neeq1d MLModXBYBXYASX=A·˙YX1RYinvgRAX0˙1R0˙
95 fvexd MLModXBYBXYASX=A·˙YinvgRAV
96 fvpr2g YBinvgRAVXYX1RYinvgRAY=invgRA
97 30 95 14 96 syl3anc MLModXBYBXYASX=A·˙YX1RYinvgRAY=invgRA
98 97 neeq1d MLModXBYBXYASX=A·˙YX1RYinvgRAY0˙invgRA0˙
99 94 98 orbi12d MLModXBYBXYASX=A·˙YX1RYinvgRAX0˙X1RYinvgRAY0˙1R0˙invgRA0˙
100 90 99 mpbird MLModXBYBXYASX=A·˙YX1RYinvgRAX0˙X1RYinvgRAY0˙
101 fveq2 v=XX1RYinvgRAv=X1RYinvgRAX
102 101 neeq1d v=XX1RYinvgRAv0˙X1RYinvgRAX0˙
103 fveq2 v=YX1RYinvgRAv=X1RYinvgRAY
104 103 neeq1d v=YX1RYinvgRAv0˙X1RYinvgRAY0˙
105 102 104 rexprg XBYBvXYX1RYinvgRAv0˙X1RYinvgRAX0˙X1RYinvgRAY0˙
106 8 105 syl MLModXBYBXYASX=A·˙YvXYX1RYinvgRAv0˙X1RYinvgRAX0˙X1RYinvgRAY0˙
107 100 106 mpbird MLModXBYBXYASX=A·˙YvXYX1RYinvgRAv0˙
108 25 adantr MLModXBYBXY1RS
109 108 adantr MLModXBYBXYASX=A·˙Y1RS
110 3 fvexi SV
111 14 110 jctir MLModXBYBXYASX=A·˙YXYSV
112 38 mapprop XB1RSYBinvgRASXYSVX1RYinvgRASXY
113 42 109 30 36 111 112 syl221anc MLModXBYBXYASX=A·˙YX1RYinvgRASXY
114 breq1 f=X1RYinvgRAfinSupp0˙ffinSupp0˙X1RYinvgRA
115 oveq1 f=X1RYinvgRAflinCMXY=X1RYinvgRAlinCMXY
116 115 eqeq1d f=X1RYinvgRAflinCMXY=ZX1RYinvgRAlinCMXY=Z
117 fveq1 f=X1RYinvgRAfv=X1RYinvgRAv
118 117 neeq1d f=X1RYinvgRAfv0˙X1RYinvgRAv0˙
119 118 rexbidv f=X1RYinvgRAvXYfv0˙vXYX1RYinvgRAv0˙
120 114 116 119 3anbi123d f=X1RYinvgRAfinSupp0˙fflinCMXY=ZvXYfv0˙finSupp0˙X1RYinvgRAX1RYinvgRAlinCMXY=ZvXYX1RYinvgRAv0˙
121 120 adantl MLModXBYBXYASX=A·˙Yf=X1RYinvgRAfinSupp0˙fflinCMXY=ZvXYfv0˙finSupp0˙X1RYinvgRAX1RYinvgRAlinCMXY=ZvXYX1RYinvgRAv0˙
122 113 121 rspcedv MLModXBYBXYASX=A·˙YfinSupp0˙X1RYinvgRAX1RYinvgRAlinCMXY=ZvXYX1RYinvgRAv0˙fSXYfinSupp0˙fflinCMXY=ZvXYfv0˙
123 21 49 107 122 mp3and MLModXBYBXYASX=A·˙YfSXYfinSupp0˙fflinCMXY=ZvXYfv0˙
124 prelpwi XBYBXY𝒫B
125 124 3adant3 XBYBXYXY𝒫B
126 125 ad2antlr MLModXBYBXYASX=A·˙YXY𝒫B
127 1 5 2 3 4 islindeps MLModXY𝒫BXYlinDepSMfSXYfinSupp0˙fflinCMXY=ZvXYfv0˙
128 41 126 127 syl2anc MLModXBYBXYASX=A·˙YXYlinDepSMfSXYfinSupp0˙fflinCMXY=ZvXYfv0˙
129 123 128 mpbird MLModXBYBXYASX=A·˙YXYlinDepSM
130 129 ex MLModXBYBXYASX=A·˙YXYlinDepSM