Metamath Proof Explorer


Theorem lebnumii

Description: Specialize the Lebesgue number lemma lebnum to the closed unit interval. (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Assertion lebnumii UII01=Unk1nuUk1nknu

Proof

Step Hyp Ref Expression
1 df-ii II=MetOpenabs01×01
2 cnmet absMet
3 unitssre 01
4 ax-resscn
5 3 4 sstri 01
6 metres2 absMet01abs01×01Met01
7 2 5 6 mp2an abs01×01Met01
8 7 a1i UII01=Uabs01×01Met01
9 iicmp IIComp
10 9 a1i UII01=UIIComp
11 simpl UII01=UUII
12 simpr UII01=U01=U
13 1 8 10 11 12 lebnum UII01=Ur+x01uUxballabs01×01ru
14 rpreccl r+1r+
15 14 adantl UII01=Ur+1r+
16 15 rpred UII01=Ur+1r
17 15 rpge0d UII01=Ur+01r
18 flge0nn0 1r01r1r0
19 16 17 18 syl2anc UII01=Ur+1r0
20 nn0p1nn 1r01r+1
21 19 20 syl UII01=Ur+1r+1
22 elfznn k11r+1k
23 22 adantl UII01=Ur+k11r+1k
24 23 nnrpd UII01=Ur+k11r+1k+
25 21 adantr UII01=Ur+k11r+11r+1
26 25 nnrpd UII01=Ur+k11r+11r+1+
27 24 26 rpdivcld UII01=Ur+k11r+1k1r+1+
28 27 rpred UII01=Ur+k11r+1k1r+1
29 27 rpge0d UII01=Ur+k11r+10k1r+1
30 elfzle2 k11r+1k1r+1
31 30 adantl UII01=Ur+k11r+1k1r+1
32 25 nnred UII01=Ur+k11r+11r+1
33 32 recnd UII01=Ur+k11r+11r+1
34 33 mulridd UII01=Ur+k11r+11r+11=1r+1
35 31 34 breqtrrd UII01=Ur+k11r+1k1r+11
36 23 nnred UII01=Ur+k11r+1k
37 1red UII01=Ur+k11r+11
38 25 nngt0d UII01=Ur+k11r+10<1r+1
39 ledivmul k11r+10<1r+1k1r+11k1r+11
40 36 37 32 38 39 syl112anc UII01=Ur+k11r+1k1r+11k1r+11
41 35 40 mpbird UII01=Ur+k11r+1k1r+11
42 elicc01 k1r+101k1r+10k1r+1k1r+11
43 28 29 41 42 syl3anbrc UII01=Ur+k11r+1k1r+101
44 oveq1 x=k1r+1xballabs01×01r=k1r+1ballabs01×01r
45 44 sseq1d x=k1r+1xballabs01×01ruk1r+1ballabs01×01ru
46 45 rexbidv x=k1r+1uUxballabs01×01ruuUk1r+1ballabs01×01ru
47 46 rspcv k1r+101x01uUxballabs01×01ruuUk1r+1ballabs01×01ru
48 43 47 syl UII01=Ur+k11r+1x01uUxballabs01×01ruuUk1r+1ballabs01×01ru
49 simplr UII01=Ur+k11r+1r+
50 49 rpred UII01=Ur+k11r+1r
51 28 50 resubcld UII01=Ur+k11r+1k1r+1r
52 51 rexrd UII01=Ur+k11r+1k1r+1r*
53 28 50 readdcld UII01=Ur+k11r+1k1r+1+r
54 53 rexrd UII01=Ur+k11r+1k1r+1+r*
55 nnm1nn0 kk10
56 23 55 syl UII01=Ur+k11r+1k10
57 56 nn0red UII01=Ur+k11r+1k1
58 57 25 nndivred UII01=Ur+k11r+1k11r+1
59 36 recnd UII01=Ur+k11r+1k
60 57 recnd UII01=Ur+k11r+1k1
61 25 nnne0d UII01=Ur+k11r+11r+10
62 59 60 33 61 divsubdird UII01=Ur+k11r+1kk11r+1=k1r+1k11r+1
63 ax-1cn 1
64 nncan k1kk1=1
65 59 63 64 sylancl UII01=Ur+k11r+1kk1=1
66 65 oveq1d UII01=Ur+k11r+1kk11r+1=11r+1
67 62 66 eqtr3d UII01=Ur+k11r+1k1r+1k11r+1=11r+1
68 49 rprecred UII01=Ur+k11r+11r
69 flltp1 1r1r<1r+1
70 68 69 syl UII01=Ur+k11r+11r<1r+1
71 rpgt0 r+0<r
72 71 ad2antlr UII01=Ur+k11r+10<r
73 ltdiv23 1r0<r1r+10<1r+11r<1r+111r+1<r
74 37 50 72 32 38 73 syl122anc UII01=Ur+k11r+11r<1r+111r+1<r
75 70 74 mpbid UII01=Ur+k11r+111r+1<r
76 67 75 eqbrtrd UII01=Ur+k11r+1k1r+1k11r+1<r
77 28 58 50 76 ltsub23d UII01=Ur+k11r+1k1r+1r<k11r+1
78 28 49 ltaddrpd UII01=Ur+k11r+1k1r+1<k1r+1+r
79 iccssioo k1r+1r*k1r+1+r*k1r+1r<k11r+1k1r+1<k1r+1+rk11r+1k1r+1k1r+1rk1r+1+r
80 52 54 77 78 79 syl22anc UII01=Ur+k11r+1k11r+1k1r+1k1r+1rk1r+1+r
81 0red UII01=Ur+k11r+10
82 56 nn0ge0d UII01=Ur+k11r+10k1
83 divge0 k10k11r+10<1r+10k11r+1
84 57 82 32 38 83 syl22anc UII01=Ur+k11r+10k11r+1
85 iccss 010k11r+1k1r+11k11r+1k1r+101
86 81 37 84 41 85 syl22anc UII01=Ur+k11r+1k11r+1k1r+101
87 80 86 ssind UII01=Ur+k11r+1k11r+1k1r+1k1r+1rk1r+1+r01
88 eqid abs2=abs2
89 88 rexmet abs2∞Met
90 sseqin2 0101=01
91 3 90 mpbi 01=01
92 43 91 eleqtrrdi UII01=Ur+k11r+1k1r+101
93 rpxr r+r*
94 93 ad2antlr UII01=Ur+k11r+1r*
95 xpss12 010101×012
96 3 3 95 mp2an 01×012
97 resabs1 01×012abs201×01=abs01×01
98 96 97 ax-mp abs201×01=abs01×01
99 98 eqcomi abs01×01=abs201×01
100 99 blres abs2∞Metk1r+101r*k1r+1ballabs01×01r=k1r+1ballabs2r01
101 89 92 94 100 mp3an2i UII01=Ur+k11r+1k1r+1ballabs01×01r=k1r+1ballabs2r01
102 88 bl2ioo k1r+1rk1r+1ballabs2r=k1r+1rk1r+1+r
103 28 50 102 syl2anc UII01=Ur+k11r+1k1r+1ballabs2r=k1r+1rk1r+1+r
104 103 ineq1d UII01=Ur+k11r+1k1r+1ballabs2r01=k1r+1rk1r+1+r01
105 101 104 eqtrd UII01=Ur+k11r+1k1r+1ballabs01×01r=k1r+1rk1r+1+r01
106 87 105 sseqtrrd UII01=Ur+k11r+1k11r+1k1r+1k1r+1ballabs01×01r
107 sstr2 k11r+1k1r+1k1r+1ballabs01×01rk1r+1ballabs01×01ruk11r+1k1r+1u
108 106 107 syl UII01=Ur+k11r+1k1r+1ballabs01×01ruk11r+1k1r+1u
109 108 reximdv UII01=Ur+k11r+1uUk1r+1ballabs01×01ruuUk11r+1k1r+1u
110 48 109 syld UII01=Ur+k11r+1x01uUxballabs01×01ruuUk11r+1k1r+1u
111 110 ralrimdva UII01=Ur+x01uUxballabs01×01ruk11r+1uUk11r+1k1r+1u
112 oveq2 n=1r+11n=11r+1
113 oveq2 n=1r+1k1n=k11r+1
114 oveq2 n=1r+1kn=k1r+1
115 113 114 oveq12d n=1r+1k1nkn=k11r+1k1r+1
116 115 sseq1d n=1r+1k1nknuk11r+1k1r+1u
117 116 rexbidv n=1r+1uUk1nknuuUk11r+1k1r+1u
118 112 117 raleqbidv n=1r+1k1nuUk1nknuk11r+1uUk11r+1k1r+1u
119 118 rspcev 1r+1k11r+1uUk11r+1k1r+1unk1nuUk1nknu
120 21 111 119 syl6an UII01=Ur+x01uUxballabs01×01runk1nuUk1nknu
121 120 rexlimdva UII01=Ur+x01uUxballabs01×01runk1nuUk1nknu
122 13 121 mpd UII01=Unk1nuUk1nknu