Metamath Proof Explorer


Theorem lebnumii

Description: Specialize the Lebesgue number lemma lebnum to the closed unit interval. (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Assertion lebnumii U II 0 1 = U n k 1 n u U k 1 n k n u

Proof

Step Hyp Ref Expression
1 df-ii II = MetOpen abs 0 1 × 0 1
2 cnmet abs Met
3 unitssre 0 1
4 ax-resscn
5 3 4 sstri 0 1
6 metres2 abs Met 0 1 abs 0 1 × 0 1 Met 0 1
7 2 5 6 mp2an abs 0 1 × 0 1 Met 0 1
8 7 a1i U II 0 1 = U abs 0 1 × 0 1 Met 0 1
9 iicmp II Comp
10 9 a1i U II 0 1 = U II Comp
11 simpl U II 0 1 = U U II
12 simpr U II 0 1 = U 0 1 = U
13 1 8 10 11 12 lebnum U II 0 1 = U r + x 0 1 u U x ball abs 0 1 × 0 1 r u
14 rpreccl r + 1 r +
15 14 adantl U II 0 1 = U r + 1 r +
16 15 rpred U II 0 1 = U r + 1 r
17 15 rpge0d U II 0 1 = U r + 0 1 r
18 flge0nn0 1 r 0 1 r 1 r 0
19 16 17 18 syl2anc U II 0 1 = U r + 1 r 0
20 nn0p1nn 1 r 0 1 r + 1
21 19 20 syl U II 0 1 = U r + 1 r + 1
22 elfznn k 1 1 r + 1 k
23 22 adantl U II 0 1 = U r + k 1 1 r + 1 k
24 23 nnrpd U II 0 1 = U r + k 1 1 r + 1 k +
25 21 adantr U II 0 1 = U r + k 1 1 r + 1 1 r + 1
26 25 nnrpd U II 0 1 = U r + k 1 1 r + 1 1 r + 1 +
27 24 26 rpdivcld U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 +
28 27 rpred U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1
29 27 rpge0d U II 0 1 = U r + k 1 1 r + 1 0 k 1 r + 1
30 elfzle2 k 1 1 r + 1 k 1 r + 1
31 30 adantl U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1
32 25 nnred U II 0 1 = U r + k 1 1 r + 1 1 r + 1
33 32 recnd U II 0 1 = U r + k 1 1 r + 1 1 r + 1
34 33 mulid1d U II 0 1 = U r + k 1 1 r + 1 1 r + 1 1 = 1 r + 1
35 31 34 breqtrrd U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 1
36 23 nnred U II 0 1 = U r + k 1 1 r + 1 k
37 1red U II 0 1 = U r + k 1 1 r + 1 1
38 25 nngt0d U II 0 1 = U r + k 1 1 r + 1 0 < 1 r + 1
39 ledivmul k 1 1 r + 1 0 < 1 r + 1 k 1 r + 1 1 k 1 r + 1 1
40 36 37 32 38 39 syl112anc U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 1 k 1 r + 1 1
41 35 40 mpbird U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 1
42 elicc01 k 1 r + 1 0 1 k 1 r + 1 0 k 1 r + 1 k 1 r + 1 1
43 28 29 41 42 syl3anbrc U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 0 1
44 oveq1 x = k 1 r + 1 x ball abs 0 1 × 0 1 r = k 1 r + 1 ball abs 0 1 × 0 1 r
45 44 sseq1d x = k 1 r + 1 x ball abs 0 1 × 0 1 r u k 1 r + 1 ball abs 0 1 × 0 1 r u
46 45 rexbidv x = k 1 r + 1 u U x ball abs 0 1 × 0 1 r u u U k 1 r + 1 ball abs 0 1 × 0 1 r u
47 46 rspcv k 1 r + 1 0 1 x 0 1 u U x ball abs 0 1 × 0 1 r u u U k 1 r + 1 ball abs 0 1 × 0 1 r u
48 43 47 syl U II 0 1 = U r + k 1 1 r + 1 x 0 1 u U x ball abs 0 1 × 0 1 r u u U k 1 r + 1 ball abs 0 1 × 0 1 r u
49 simplr U II 0 1 = U r + k 1 1 r + 1 r +
50 49 rpred U II 0 1 = U r + k 1 1 r + 1 r
51 28 50 resubcld U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 r
52 51 rexrd U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 r *
53 28 50 readdcld U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 + r
54 53 rexrd U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 + r *
55 nnm1nn0 k k 1 0
56 23 55 syl U II 0 1 = U r + k 1 1 r + 1 k 1 0
57 56 nn0red U II 0 1 = U r + k 1 1 r + 1 k 1
58 57 25 nndivred U II 0 1 = U r + k 1 1 r + 1 k 1 1 r + 1
59 36 recnd U II 0 1 = U r + k 1 1 r + 1 k
60 57 recnd U II 0 1 = U r + k 1 1 r + 1 k 1
61 25 nnne0d U II 0 1 = U r + k 1 1 r + 1 1 r + 1 0
62 59 60 33 61 divsubdird U II 0 1 = U r + k 1 1 r + 1 k k 1 1 r + 1 = k 1 r + 1 k 1 1 r + 1
63 ax-1cn 1
64 nncan k 1 k k 1 = 1
65 59 63 64 sylancl U II 0 1 = U r + k 1 1 r + 1 k k 1 = 1
66 65 oveq1d U II 0 1 = U r + k 1 1 r + 1 k k 1 1 r + 1 = 1 1 r + 1
67 62 66 eqtr3d U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 k 1 1 r + 1 = 1 1 r + 1
68 49 rprecred U II 0 1 = U r + k 1 1 r + 1 1 r
69 flltp1 1 r 1 r < 1 r + 1
70 68 69 syl U II 0 1 = U r + k 1 1 r + 1 1 r < 1 r + 1
71 rpgt0 r + 0 < r
72 71 ad2antlr U II 0 1 = U r + k 1 1 r + 1 0 < r
73 ltdiv23 1 r 0 < r 1 r + 1 0 < 1 r + 1 1 r < 1 r + 1 1 1 r + 1 < r
74 37 50 72 32 38 73 syl122anc U II 0 1 = U r + k 1 1 r + 1 1 r < 1 r + 1 1 1 r + 1 < r
75 70 74 mpbid U II 0 1 = U r + k 1 1 r + 1 1 1 r + 1 < r
76 67 75 eqbrtrd U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 k 1 1 r + 1 < r
77 28 58 50 76 ltsub23d U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 r < k 1 1 r + 1
78 28 49 ltaddrpd U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 < k 1 r + 1 + r
79 iccssioo k 1 r + 1 r * k 1 r + 1 + r * k 1 r + 1 r < k 1 1 r + 1 k 1 r + 1 < k 1 r + 1 + r k 1 1 r + 1 k 1 r + 1 k 1 r + 1 r k 1 r + 1 + r
80 52 54 77 78 79 syl22anc U II 0 1 = U r + k 1 1 r + 1 k 1 1 r + 1 k 1 r + 1 k 1 r + 1 r k 1 r + 1 + r
81 0red U II 0 1 = U r + k 1 1 r + 1 0
82 56 nn0ge0d U II 0 1 = U r + k 1 1 r + 1 0 k 1
83 divge0 k 1 0 k 1 1 r + 1 0 < 1 r + 1 0 k 1 1 r + 1
84 57 82 32 38 83 syl22anc U II 0 1 = U r + k 1 1 r + 1 0 k 1 1 r + 1
85 iccss 0 1 0 k 1 1 r + 1 k 1 r + 1 1 k 1 1 r + 1 k 1 r + 1 0 1
86 81 37 84 41 85 syl22anc U II 0 1 = U r + k 1 1 r + 1 k 1 1 r + 1 k 1 r + 1 0 1
87 80 86 ssind U II 0 1 = U r + k 1 1 r + 1 k 1 1 r + 1 k 1 r + 1 k 1 r + 1 r k 1 r + 1 + r 0 1
88 eqid abs 2 = abs 2
89 88 rexmet abs 2 ∞Met
90 sseqin2 0 1 0 1 = 0 1
91 3 90 mpbi 0 1 = 0 1
92 43 91 eleqtrrdi U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 0 1
93 rpxr r + r *
94 93 ad2antlr U II 0 1 = U r + k 1 1 r + 1 r *
95 xpss12 0 1 0 1 0 1 × 0 1 2
96 3 3 95 mp2an 0 1 × 0 1 2
97 resabs1 0 1 × 0 1 2 abs 2 0 1 × 0 1 = abs 0 1 × 0 1
98 96 97 ax-mp abs 2 0 1 × 0 1 = abs 0 1 × 0 1
99 98 eqcomi abs 0 1 × 0 1 = abs 2 0 1 × 0 1
100 99 blres abs 2 ∞Met k 1 r + 1 0 1 r * k 1 r + 1 ball abs 0 1 × 0 1 r = k 1 r + 1 ball abs 2 r 0 1
101 89 92 94 100 mp3an2i U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 ball abs 0 1 × 0 1 r = k 1 r + 1 ball abs 2 r 0 1
102 88 bl2ioo k 1 r + 1 r k 1 r + 1 ball abs 2 r = k 1 r + 1 r k 1 r + 1 + r
103 28 50 102 syl2anc U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 ball abs 2 r = k 1 r + 1 r k 1 r + 1 + r
104 103 ineq1d U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 ball abs 2 r 0 1 = k 1 r + 1 r k 1 r + 1 + r 0 1
105 101 104 eqtrd U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 ball abs 0 1 × 0 1 r = k 1 r + 1 r k 1 r + 1 + r 0 1
106 87 105 sseqtrrd U II 0 1 = U r + k 1 1 r + 1 k 1 1 r + 1 k 1 r + 1 k 1 r + 1 ball abs 0 1 × 0 1 r
107 sstr2 k 1 1 r + 1 k 1 r + 1 k 1 r + 1 ball abs 0 1 × 0 1 r k 1 r + 1 ball abs 0 1 × 0 1 r u k 1 1 r + 1 k 1 r + 1 u
108 106 107 syl U II 0 1 = U r + k 1 1 r + 1 k 1 r + 1 ball abs 0 1 × 0 1 r u k 1 1 r + 1 k 1 r + 1 u
109 108 reximdv U II 0 1 = U r + k 1 1 r + 1 u U k 1 r + 1 ball abs 0 1 × 0 1 r u u U k 1 1 r + 1 k 1 r + 1 u
110 48 109 syld U II 0 1 = U r + k 1 1 r + 1 x 0 1 u U x ball abs 0 1 × 0 1 r u u U k 1 1 r + 1 k 1 r + 1 u
111 110 ralrimdva U II 0 1 = U r + x 0 1 u U x ball abs 0 1 × 0 1 r u k 1 1 r + 1 u U k 1 1 r + 1 k 1 r + 1 u
112 oveq2 n = 1 r + 1 1 n = 1 1 r + 1
113 oveq2 n = 1 r + 1 k 1 n = k 1 1 r + 1
114 oveq2 n = 1 r + 1 k n = k 1 r + 1
115 113 114 oveq12d n = 1 r + 1 k 1 n k n = k 1 1 r + 1 k 1 r + 1
116 115 sseq1d n = 1 r + 1 k 1 n k n u k 1 1 r + 1 k 1 r + 1 u
117 116 rexbidv n = 1 r + 1 u U k 1 n k n u u U k 1 1 r + 1 k 1 r + 1 u
118 112 117 raleqbidv n = 1 r + 1 k 1 n u U k 1 n k n u k 1 1 r + 1 u U k 1 1 r + 1 k 1 r + 1 u
119 118 rspcev 1 r + 1 k 1 1 r + 1 u U k 1 1 r + 1 k 1 r + 1 u n k 1 n u U k 1 n k n u
120 21 111 119 syl6an U II 0 1 = U r + x 0 1 u U x ball abs 0 1 × 0 1 r u n k 1 n u U k 1 n k n u
121 120 rexlimdva U II 0 1 = U r + x 0 1 u U x ball abs 0 1 × 0 1 r u n k 1 n u U k 1 n k n u
122 13 121 mpd U II 0 1 = U n k 1 n u U k 1 n k n u