Metamath Proof Explorer


Theorem linc1

Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 18-Apr-2019) (Proof shortened by AV, 28-Jul-2019)

Ref Expression
Hypotheses linc1.b B=BaseM
linc1.s S=ScalarM
linc1.0 0˙=0S
linc1.1 1˙=1S
linc1.f F=xVifx=X1˙0˙
Assertion linc1 MLModV𝒫BXVFlinCMV=X

Proof

Step Hyp Ref Expression
1 linc1.b B=BaseM
2 linc1.s S=ScalarM
3 linc1.0 0˙=0S
4 linc1.1 1˙=1S
5 linc1.f F=xVifx=X1˙0˙
6 simp1 MLModV𝒫BXVMLMod
7 2 lmodring MLModSRing
8 2 eqcomi ScalarM=S
9 8 fveq2i BaseScalarM=BaseS
10 9 4 ringidcl SRing1˙BaseScalarM
11 9 3 ring0cl SRing0˙BaseScalarM
12 10 11 jca SRing1˙BaseScalarM0˙BaseScalarM
13 7 12 syl MLMod1˙BaseScalarM0˙BaseScalarM
14 13 3ad2ant1 MLModV𝒫BXV1˙BaseScalarM0˙BaseScalarM
15 14 adantr MLModV𝒫BXVxV1˙BaseScalarM0˙BaseScalarM
16 ifcl 1˙BaseScalarM0˙BaseScalarMifx=X1˙0˙BaseScalarM
17 15 16 syl MLModV𝒫BXVxVifx=X1˙0˙BaseScalarM
18 17 5 fmptd MLModV𝒫BXVF:VBaseScalarM
19 fvex BaseScalarMV
20 simp2 MLModV𝒫BXVV𝒫B
21 elmapg BaseScalarMVV𝒫BFBaseScalarMVF:VBaseScalarM
22 19 20 21 sylancr MLModV𝒫BXVFBaseScalarMVF:VBaseScalarM
23 18 22 mpbird MLModV𝒫BXVFBaseScalarMV
24 1 pweqi 𝒫B=𝒫BaseM
25 24 eleq2i V𝒫BV𝒫BaseM
26 25 biimpi V𝒫BV𝒫BaseM
27 26 3ad2ant2 MLModV𝒫BXVV𝒫BaseM
28 lincval MLModFBaseScalarMVV𝒫BaseMFlinCMV=MyVFyMy
29 6 23 27 28 syl3anc MLModV𝒫BXVFlinCMV=MyVFyMy
30 eqid 0M=0M
31 lmodgrp MLModMGrp
32 31 grpmndd MLModMMnd
33 32 3ad2ant1 MLModV𝒫BXVMMnd
34 simp3 MLModV𝒫BXVXV
35 6 adantr MLModV𝒫BXVyVMLMod
36 eqeq1 x=yx=Xy=X
37 36 ifbid x=yifx=X1˙0˙=ify=X1˙0˙
38 simpr MLModV𝒫BXVyVyV
39 eqid BaseS=BaseS
40 2 39 4 lmod1cl MLMod1˙BaseS
41 40 3ad2ant1 MLModV𝒫BXV1˙BaseS
42 41 adantr MLModV𝒫BXVyV1˙BaseS
43 2 39 3 lmod0cl MLMod0˙BaseS
44 43 3ad2ant1 MLModV𝒫BXV0˙BaseS
45 44 adantr MLModV𝒫BXVyV0˙BaseS
46 42 45 ifcld MLModV𝒫BXVyVify=X1˙0˙BaseS
47 5 37 38 46 fvmptd3 MLModV𝒫BXVyVFy=ify=X1˙0˙
48 47 46 eqeltrd MLModV𝒫BXVyVFyBaseS
49 elelpwi yVV𝒫ByB
50 49 expcom V𝒫ByVyB
51 50 3ad2ant2 MLModV𝒫BXVyVyB
52 51 imp MLModV𝒫BXVyVyB
53 eqid M=M
54 1 2 53 39 lmodvscl MLModFyBaseSyBFyMyB
55 35 48 52 54 syl3anc MLModV𝒫BXVyVFyMyB
56 eqid yVFyMy=yVFyMy
57 55 56 fmptd MLModV𝒫BXVyVFyMy:VB
58 fveq2 y=vFy=Fv
59 id y=vy=v
60 58 59 oveq12d y=vFyMy=FvMv
61 60 cbvmptv yVFyMy=vVFvMv
62 fvexd MLModV𝒫BXV0MV
63 ovexd MLModV𝒫BXVvVFvMvV
64 61 20 62 63 mptsuppd MLModV𝒫BXVyVFyMysupp0M=vV|FvMv0M
65 2a1 v=XMLModV𝒫BXVvVFvMv0Mv=X
66 simprr ¬v=XMLModV𝒫BXVvVvV
67 4 fvexi 1˙V
68 3 fvexi 0˙V
69 67 68 ifex ifv=X1˙0˙V
70 eqeq1 x=vx=Xv=X
71 70 ifbid x=vifx=X1˙0˙=ifv=X1˙0˙
72 71 5 fvmptg vVifv=X1˙0˙VFv=ifv=X1˙0˙
73 66 69 72 sylancl ¬v=XMLModV𝒫BXVvVFv=ifv=X1˙0˙
74 iffalse ¬v=Xifv=X1˙0˙=0˙
75 74 adantr ¬v=XMLModV𝒫BXVvVifv=X1˙0˙=0˙
76 73 75 eqtrd ¬v=XMLModV𝒫BXVvVFv=0˙
77 76 oveq1d ¬v=XMLModV𝒫BXVvVFvMv=0˙Mv
78 6 adantr MLModV𝒫BXVvVMLMod
79 78 adantl ¬v=XMLModV𝒫BXVvVMLMod
80 elelpwi vVV𝒫BvB
81 80 expcom V𝒫BvVvB
82 81 3ad2ant2 MLModV𝒫BXVvVvB
83 82 imp MLModV𝒫BXVvVvB
84 83 adantl ¬v=XMLModV𝒫BXVvVvB
85 1 2 53 3 30 lmod0vs MLModvB0˙Mv=0M
86 79 84 85 syl2anc ¬v=XMLModV𝒫BXVvV0˙Mv=0M
87 77 86 eqtrd ¬v=XMLModV𝒫BXVvVFvMv=0M
88 87 neeq1d ¬v=XMLModV𝒫BXVvVFvMv0M0M0M
89 eqneqall 0M=0M0M0Mv=X
90 30 89 ax-mp 0M0Mv=X
91 88 90 syl6bi ¬v=XMLModV𝒫BXVvVFvMv0Mv=X
92 91 ex ¬v=XMLModV𝒫BXVvVFvMv0Mv=X
93 65 92 pm2.61i MLModV𝒫BXVvVFvMv0Mv=X
94 93 ralrimiva MLModV𝒫BXVvVFvMv0Mv=X
95 rabsssn vV|FvMv0MXvVFvMv0Mv=X
96 94 95 sylibr MLModV𝒫BXVvV|FvMv0MX
97 64 96 eqsstrd MLModV𝒫BXVyVFyMysupp0MX
98 1 30 33 20 34 57 97 gsumpt MLModV𝒫BXVMyVFyMy=yVFyMyX
99 ovex FXMXV
100 fveq2 y=XFy=FX
101 id y=Xy=X
102 100 101 oveq12d y=XFyMy=FXMX
103 102 56 fvmptg XVFXMXVyVFyMyX=FXMX
104 34 99 103 sylancl MLModV𝒫BXVyVFyMyX=FXMX
105 iftrue x=Xifx=X1˙0˙=1˙
106 105 5 fvmptg XV1˙VFX=1˙
107 34 67 106 sylancl MLModV𝒫BXVFX=1˙
108 107 oveq1d MLModV𝒫BXVFXMX=1˙MX
109 elelpwi XVV𝒫BXB
110 109 ancoms V𝒫BXVXB
111 110 3adant1 MLModV𝒫BXVXB
112 1 2 53 4 lmodvs1 MLModXB1˙MX=X
113 6 111 112 syl2anc MLModV𝒫BXV1˙MX=X
114 104 108 113 3eqtrd MLModV𝒫BXVyVFyMyX=X
115 29 98 114 3eqtrd MLModV𝒫BXVFlinCMV=X