Metamath Proof Explorer


Theorem lly1stc

Description: First-countability is a local property (unlike second-countability). (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion lly1stc Locally 1st𝜔 = 1st𝜔

Proof

Step Hyp Ref Expression
1 llytop jLocally 1st𝜔 jTop
2 simprr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 j𝑡u1st𝜔
3 simprl jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 xu
4 1 ad3antrrr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 jTop
5 elssuni ujuj
6 5 ad2antlr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 uj
7 eqid j=j
8 7 restuni jTopuju=j𝑡u
9 4 6 8 syl2anc jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 u=j𝑡u
10 3 9 eleqtrd jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 xj𝑡u
11 eqid j𝑡u=j𝑡u
12 11 1stcclb j𝑡u1st𝜔xj𝑡ut𝒫j𝑡utωvj𝑡uxvntxnnv
13 2 10 12 syl2anc jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv
14 elpwi t𝒫j𝑡utj𝑡u
15 14 adantl jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u tj𝑡u
16 15 sselda jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nt nj𝑡u
17 4 adantr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u jTop
18 simpllr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u uj
19 restopn2 jTopujnj𝑡unjnu
20 17 18 19 syl2anc jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nj𝑡unjnu
21 20 simplbda jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nj𝑡u nu
22 16 21 syldan jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nt nu
23 df-ss nunu=n
24 22 23 sylib jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nt nu=n
25 20 simprbda jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nj𝑡u nj
26 16 25 syldan jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nt nj
27 24 26 eqeltrd jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nt nuj
28 ineq1 a=nau=nu
29 28 cbvmptv atau=ntnu
30 27 29 fmptd jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u atau:tj
31 30 frnd jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u ranatauj
32 31 adantrr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv ranatauj
33 vex jV
34 33 elpw2 ranatau𝒫jranatauj
35 32 34 sylibr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv ranatau𝒫j
36 simprrl jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv tω
37 1stcrestlem tωranatauω
38 36 37 syl jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv ranatauω
39 simprr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zjxz xz
40 3 ad2antrr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zjxz xu
41 39 40 elind jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zjxz xzu
42 eleq2 v=zuxvxzu
43 sseq2 v=zunvnzu
44 43 anbi2d v=zuxnnvxnnzu
45 44 rexbidv v=zuntxnnvntxnnzu
46 42 45 imbi12d v=zuxvntxnnvxzuntxnnzu
47 simprrr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv vj𝑡uxvntxnnv
48 47 adantr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zjxz vj𝑡uxvntxnnv
49 4 ad2antrr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zjxz jTop
50 simpllr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv uj
51 50 adantr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zjxz uj
52 simprl jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zjxz zj
53 elrestr jTopujzjzuj𝑡u
54 49 51 52 53 syl3anc jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zjxz zuj𝑡u
55 46 48 54 rspcdva jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zjxz xzuntxnnzu
56 41 55 mpd jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zjxz ntxnnzu
57 3 ad2antrr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nt xu
58 elin xnuxnxu
59 58 simplbi2com xuxnxnu
60 57 59 syl jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nt xnxnu
61 22 biantrud jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nt nznznu
62 ssin nznunzu
63 61 62 bitrdi jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nt nznzu
64 ssinss1 nznuz
65 63 64 syl6bir jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nt nzunuz
66 60 65 anim12d jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u nt xnnzuxnunuz
67 66 reximdva jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u ntxnnzuntxnunuz
68 vex nV
69 68 inex1 nuV
70 69 rgenw ntnuV
71 eleq2 w=nuxwxnu
72 sseq1 w=nuwznuz
73 71 72 anbi12d w=nuxwwzxnunuz
74 29 73 rexrnmptw ntnuVwranatauxwwzntxnunuz
75 70 74 ax-mp wranatauxwwzntxnunuz
76 67 75 syl6ibr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡u ntxnnzuwranatauxwwz
77 76 adantrr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv ntxnnzuwranatauxwwz
78 77 adantr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zjxz ntxnnzuwranatauxwwz
79 56 78 mpd jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zjxz wranatauxwwz
80 79 expr jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zj xzwranatauxwwz
81 80 ralrimiva jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv zjxzwranatauxwwz
82 breq1 y=ranatauyωranatauω
83 rexeq y=ranatauwyxwwzwranatauxwwz
84 83 imbi2d y=ranatauxzwyxwwzxzwranatauxwwz
85 84 ralbidv y=ranatauzjxzwyxwwzzjxzwranatauxwwz
86 82 85 anbi12d y=ranatauyωzjxzwyxwwzranatauωzjxzwranatauxwwz
87 86 rspcev ranatau𝒫jranatauωzjxzwranatauxwwzy𝒫jyωzjxzwyxwwz
88 35 38 81 87 syl12anc jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 t𝒫j𝑡utωvj𝑡uxvntxnnv y𝒫jyωzjxzwyxwwz
89 13 88 rexlimddv jLocally 1st𝜔 xj uj xuj𝑡u1st𝜔 y𝒫jyωzjxzwyxwwz
90 89 3adantr1 jLocally 1st𝜔 xj uj ujxuj𝑡u1st𝜔 y𝒫jyωzjxzwyxwwz
91 simpl jLocally 1st𝜔 xj jLocally 1st𝜔
92 1 adantr jLocally 1st𝜔 xj jTop
93 7 topopn jTopjj
94 92 93 syl jLocally 1st𝜔 xj jj
95 simpr jLocally 1st𝜔 xj xj
96 llyi jLocally 1st𝜔 jj xj ujujxuj𝑡u1st𝜔
97 91 94 95 96 syl3anc jLocally 1st𝜔 xj ujujxuj𝑡u1st𝜔
98 90 97 r19.29a jLocally 1st𝜔 xj y𝒫jyωzjxzwyxwwz
99 98 ralrimiva jLocally 1st𝜔 xjy𝒫jyωzjxzwyxwwz
100 7 is1stc2 j1st𝜔jTopxjy𝒫jyωzjxzwyxwwz
101 1 99 100 sylanbrc jLocally 1st𝜔 j1st𝜔
102 101 ssriv Locally 1st𝜔 1st𝜔
103 1stcrest j1st𝜔xjj𝑡x1st𝜔
104 103 adantl j1st𝜔xjj𝑡x1st𝜔
105 1stctop j1st𝜔jTop
106 105 ssriv 1st𝜔Top
107 106 a1i 1st𝜔Top
108 104 107 restlly 1st𝜔Locally 1st𝜔
109 108 mptru 1st𝜔Locally 1st𝜔
110 102 109 eqssi Locally 1st𝜔 = 1st𝜔