Metamath Proof Explorer


Theorem madugsum

Description: The determinant of a matrix with a row L consisting of the same element X is the sum of the elements of the L -th column of the adjunct of the matrix multiplied with X . (Contributed by Stefan O'Rear, 16-Jul-2018)

Ref Expression
Hypotheses maduf.a A=NMatR
maduf.j J=NmaAdjuR
maduf.b B=BaseA
madugsum.d D=NmaDetR
madugsum.t ·˙=R
madugsum.k K=BaseR
madugsum.m φMB
madugsum.r φRCRing
madugsum.x φiNXK
madugsum.l φLN
Assertion madugsum φRiNX·˙iJML=DjN,iNifj=LXjMi

Proof

Step Hyp Ref Expression
1 maduf.a A=NMatR
2 maduf.j J=NmaAdjuR
3 maduf.b B=BaseA
4 madugsum.d D=NmaDetR
5 madugsum.t ·˙=R
6 madugsum.k K=BaseR
7 madugsum.m φMB
8 madugsum.r φRCRing
9 madugsum.x φiNXK
10 madugsum.l φLN
11 mpteq1 c=bcb/iX·˙bJML=bb/iX·˙bJML
12 11 oveq2d c=Rbcb/iX·˙bJML=Rbb/iX·˙bJML
13 eleq2 c=bcb
14 13 ifbid c=ifbcb/iX0R=ifbb/iX0R
15 14 ifeq1d c=ifa=Lifbcb/iX0RaMb=ifa=Lifbb/iX0RaMb
16 15 mpoeq3dv c=aN,bNifa=Lifbcb/iX0RaMb=aN,bNifa=Lifbb/iX0RaMb
17 16 fveq2d c=DaN,bNifa=Lifbcb/iX0RaMb=DaN,bNifa=Lifbb/iX0RaMb
18 12 17 eqeq12d c=Rbcb/iX·˙bJML=DaN,bNifa=Lifbcb/iX0RaMbRbb/iX·˙bJML=DaN,bNifa=Lifbb/iX0RaMb
19 mpteq1 c=dbcb/iX·˙bJML=bdb/iX·˙bJML
20 19 oveq2d c=dRbcb/iX·˙bJML=Rbdb/iX·˙bJML
21 eleq2 c=dbcbd
22 21 ifbid c=difbcb/iX0R=ifbdb/iX0R
23 22 ifeq1d c=difa=Lifbcb/iX0RaMb=ifa=Lifbdb/iX0RaMb
24 23 mpoeq3dv c=daN,bNifa=Lifbcb/iX0RaMb=aN,bNifa=Lifbdb/iX0RaMb
25 24 fveq2d c=dDaN,bNifa=Lifbcb/iX0RaMb=DaN,bNifa=Lifbdb/iX0RaMb
26 20 25 eqeq12d c=dRbcb/iX·˙bJML=DaN,bNifa=Lifbcb/iX0RaMbRbdb/iX·˙bJML=DaN,bNifa=Lifbdb/iX0RaMb
27 mpteq1 c=debcb/iX·˙bJML=bdeb/iX·˙bJML
28 27 oveq2d c=deRbcb/iX·˙bJML=Rbdeb/iX·˙bJML
29 eleq2 c=debcbde
30 29 ifbid c=deifbcb/iX0R=ifbdeb/iX0R
31 30 ifeq1d c=deifa=Lifbcb/iX0RaMb=ifa=Lifbdeb/iX0RaMb
32 31 mpoeq3dv c=deaN,bNifa=Lifbcb/iX0RaMb=aN,bNifa=Lifbdeb/iX0RaMb
33 32 fveq2d c=deDaN,bNifa=Lifbcb/iX0RaMb=DaN,bNifa=Lifbdeb/iX0RaMb
34 28 33 eqeq12d c=deRbcb/iX·˙bJML=DaN,bNifa=Lifbcb/iX0RaMbRbdeb/iX·˙bJML=DaN,bNifa=Lifbdeb/iX0RaMb
35 mpteq1 c=Nbcb/iX·˙bJML=bNb/iX·˙bJML
36 35 oveq2d c=NRbcb/iX·˙bJML=RbNb/iX·˙bJML
37 eleq2 c=NbcbN
38 37 ifbid c=Nifbcb/iX0R=ifbNb/iX0R
39 38 ifeq1d c=Nifa=Lifbcb/iX0RaMb=ifa=LifbNb/iX0RaMb
40 39 mpoeq3dv c=NaN,bNifa=Lifbcb/iX0RaMb=aN,bNifa=LifbNb/iX0RaMb
41 40 fveq2d c=NDaN,bNifa=Lifbcb/iX0RaMb=DaN,bNifa=LifbNb/iX0RaMb
42 36 41 eqeq12d c=NRbcb/iX·˙bJML=DaN,bNifa=Lifbcb/iX0RaMbRbNb/iX·˙bJML=DaN,bNifa=LifbNb/iX0RaMb
43 mpt0 bb/iX·˙bJML=
44 43 oveq2i Rbb/iX·˙bJML=R
45 eqid 0R=0R
46 45 gsum0 R=0R
47 44 46 eqtri Rbb/iX·˙bJML=0R
48 noel ¬b
49 iffalse ¬bifbb/iX0R=0R
50 48 49 mp1i aNbNifbb/iX0R=0R
51 50 ifeq1d aNbNifa=Lifbb/iX0RaMb=ifa=L0RaMb
52 51 mpoeq3ia aN,bNifa=Lifbb/iX0RaMb=aN,bNifa=L0RaMb
53 52 fveq2i DaN,bNifa=Lifbb/iX0RaMb=DaN,bNifa=L0RaMb
54 1 3 matrcl MBNFinRV
55 7 54 syl φNFinRV
56 55 simpld φNFin
57 1 6 3 matbas2i MBMKN×N
58 elmapi MKN×NM:N×NK
59 7 57 58 3syl φM:N×NK
60 59 fovcdmda φaNbNaMbK
61 60 3impb φaNbNaMbK
62 4 6 45 8 56 61 10 mdetr0 φDaN,bNifa=L0RaMb=0R
63 53 62 eqtrid φDaN,bNifa=Lifbb/iX0RaMb=0R
64 47 63 eqtr4id φRbb/iX·˙bJML=DaN,bNifa=Lifbb/iX0RaMb
65 eqid +R=+R
66 8 adantr φdNeNdRCRing
67 crngring RCRingRRing
68 66 67 syl φdNeNdRRing
69 ringcmn RRingRCMnd
70 68 69 syl φdNeNdRCMnd
71 56 adantr φdNeNdNFin
72 simprl φdNeNddN
73 71 72 ssfid φdNeNddFin
74 68 adantr φdNeNdbdRRing
75 72 sselda φdNeNdbdbN
76 9 ralrimiva φiNXK
77 76 ad2antrr φdNeNdbdiNXK
78 rspcsbela bNiNXKb/iXK
79 75 77 78 syl2anc φdNeNdbdb/iXK
80 1 2 3 maduf RCRingJ:BB
81 8 80 syl φJ:BB
82 81 7 ffvelcdmd φJMB
83 1 6 3 matbas2i JMBJMKN×N
84 elmapi JMKN×NJM:N×NK
85 82 83 84 3syl φJM:N×NK
86 85 ad2antrr φdNeNdbdJM:N×NK
87 10 ad2antrr φdNeNdbdLN
88 86 75 87 fovcdmd φdNeNdbdbJMLK
89 6 5 ringcl RRingb/iXKbJMLKb/iX·˙bJMLK
90 74 79 88 89 syl3anc φdNeNdbdb/iX·˙bJMLK
91 vex eV
92 91 a1i φdNeNdeV
93 eldifn eNd¬ed
94 93 ad2antll φdNeNd¬ed
95 eldifi eNdeN
96 95 ad2antll φdNeNdeN
97 76 adantr φdNeNdiNXK
98 rspcsbela eNiNXKe/iXK
99 96 97 98 syl2anc φdNeNde/iXK
100 85 adantr φdNeNdJM:N×NK
101 10 adantr φdNeNdLN
102 100 96 101 fovcdmd φdNeNdeJMLK
103 6 5 ringcl RRinge/iXKeJMLKe/iX·˙eJMLK
104 68 99 102 103 syl3anc φdNeNde/iX·˙eJMLK
105 csbeq1 b=eb/iX=e/iX
106 oveq1 b=ebJML=eJML
107 105 106 oveq12d b=eb/iX·˙bJML=e/iX·˙eJML
108 6 65 70 73 90 92 94 104 107 gsumunsn φdNeNdRbdeb/iX·˙bJML=Rbdb/iX·˙bJML+Re/iX·˙eJML
109 108 adantr φdNeNdRbdb/iX·˙bJML=DaN,bNifa=Lifbdb/iX0RaMbRbdeb/iX·˙bJML=Rbdb/iX·˙bJML+Re/iX·˙eJML
110 oveq1 Rbdb/iX·˙bJML=DaN,bNifa=Lifbdb/iX0RaMbRbdb/iX·˙bJML+Re/iX·˙eJML=DaN,bNifa=Lifbdb/iX0RaMb+Re/iX·˙eJML
111 110 adantl φdNeNdRbdb/iX·˙bJML=DaN,bNifa=Lifbdb/iX0RaMbRbdb/iX·˙bJML+Re/iX·˙eJML=DaN,bNifa=Lifbdb/iX0RaMb+Re/iX·˙eJML
112 elun bdebdbe
113 velsn beb=e
114 113 orbi2i bdbebdb=e
115 112 114 bitri bdebdb=e
116 ifbi bdebdb=eifbdeb/iX0R=ifbdb=eb/iX0R
117 115 116 ax-mp ifbdeb/iX0R=ifbdb=eb/iX0R
118 ringmnd RRingRMnd
119 68 118 syl φdNeNdRMnd
120 119 3ad2ant1 φdNeNdaNbNRMnd
121 simp3 φdNeNdaNbNbN
122 97 3ad2ant1 φdNeNdaNbNiNXK
123 121 122 78 syl2anc φdNeNdaNbNb/iXK
124 elequ1 b=ebded
125 124 biimpac bdb=eed
126 94 125 nsyl φdNeNd¬bdb=e
127 126 3ad2ant1 φdNeNdaNbN¬bdb=e
128 6 45 65 mndifsplit RMndb/iXK¬bdb=eifbdb=eb/iX0R=ifbdb/iX0R+Rifb=eb/iX0R
129 120 123 127 128 syl3anc φdNeNdaNbNifbdb=eb/iX0R=ifbdb/iX0R+Rifb=eb/iX0R
130 117 129 eqtrid φdNeNdaNbNifbdeb/iX0R=ifbdb/iX0R+Rifb=eb/iX0R
131 105 adantl φdNeNdb=eb/iX=e/iX
132 131 ifeq1da φdNeNdifb=eb/iX0R=ifb=ee/iX0R
133 ovif2 e/iX·˙ifb=e1R0R=ifb=ee/iX·˙1Re/iX·˙0R
134 eqid 1R=1R
135 6 5 134 ringridm RRinge/iXKe/iX·˙1R=e/iX
136 68 99 135 syl2anc φdNeNde/iX·˙1R=e/iX
137 6 5 45 ringrz RRinge/iXKe/iX·˙0R=0R
138 68 99 137 syl2anc φdNeNde/iX·˙0R=0R
139 136 138 ifeq12d φdNeNdifb=ee/iX·˙1Re/iX·˙0R=ifb=ee/iX0R
140 133 139 eqtrid φdNeNde/iX·˙ifb=e1R0R=ifb=ee/iX0R
141 132 140 eqtr4d φdNeNdifb=eb/iX0R=e/iX·˙ifb=e1R0R
142 141 oveq2d φdNeNdifbdb/iX0R+Rifb=eb/iX0R=ifbdb/iX0R+Re/iX·˙ifb=e1R0R
143 142 3ad2ant1 φdNeNdaNbNifbdb/iX0R+Rifb=eb/iX0R=ifbdb/iX0R+Re/iX·˙ifb=e1R0R
144 130 143 eqtrd φdNeNdaNbNifbdeb/iX0R=ifbdb/iX0R+Re/iX·˙ifb=e1R0R
145 144 ifeq1d φdNeNdaNbNifa=Lifbdeb/iX0RaMb=ifa=Lifbdb/iX0R+Re/iX·˙ifb=e1R0RaMb
146 145 mpoeq3dva φdNeNdaN,bNifa=Lifbdeb/iX0RaMb=aN,bNifa=Lifbdb/iX0R+Re/iX·˙ifb=e1R0RaMb
147 146 fveq2d φdNeNdDaN,bNifa=Lifbdeb/iX0RaMb=DaN,bNifa=Lifbdb/iX0R+Re/iX·˙ifb=e1R0RaMb
148 6 45 ring0cl RRing0RK
149 68 148 syl φdNeNd0RK
150 149 3ad2ant1 φdNeNdaNbN0RK
151 123 150 ifcld φdNeNdaNbNifbdb/iX0RK
152 6 134 ringidcl RRing1RK
153 68 152 syl φdNeNd1RK
154 153 149 ifcld φdNeNdifb=e1R0RK
155 6 5 ringcl RRinge/iXKifb=e1R0RKe/iX·˙ifb=e1R0RK
156 68 99 154 155 syl3anc φdNeNde/iX·˙ifb=e1R0RK
157 156 3ad2ant1 φdNeNdaNbNe/iX·˙ifb=e1R0RK
158 59 adantr φdNeNdM:N×NK
159 158 fovcdmda φdNeNdaNbNaMbK
160 159 3impb φdNeNdaNbNaMbK
161 4 6 65 66 71 151 157 160 101 mdetrlin2 φdNeNdDaN,bNifa=Lifbdb/iX0R+Re/iX·˙ifb=e1R0RaMb=DaN,bNifa=Lifbdb/iX0RaMb+RDaN,bNifa=Le/iX·˙ifb=e1R0RaMb
162 154 3ad2ant1 φdNeNdaNbNifb=e1R0RK
163 4 6 5 66 71 162 160 99 101 mdetrsca2 φdNeNdDaN,bNifa=Le/iX·˙ifb=e1R0RaMb=e/iX·˙DaN,bNifa=Lifb=e1R0RaMb
164 7 adantr φdNeNdMB
165 1 4 2 3 134 45 maducoeval MBeNLNeJML=DaN,bNifa=Lifb=e1R0RaMb
166 164 96 101 165 syl3anc φdNeNdeJML=DaN,bNifa=Lifb=e1R0RaMb
167 166 oveq2d φdNeNde/iX·˙eJML=e/iX·˙DaN,bNifa=Lifb=e1R0RaMb
168 163 167 eqtr4d φdNeNdDaN,bNifa=Le/iX·˙ifb=e1R0RaMb=e/iX·˙eJML
169 168 oveq2d φdNeNdDaN,bNifa=Lifbdb/iX0RaMb+RDaN,bNifa=Le/iX·˙ifb=e1R0RaMb=DaN,bNifa=Lifbdb/iX0RaMb+Re/iX·˙eJML
170 147 161 169 3eqtrrd φdNeNdDaN,bNifa=Lifbdb/iX0RaMb+Re/iX·˙eJML=DaN,bNifa=Lifbdeb/iX0RaMb
171 170 adantr φdNeNdRbdb/iX·˙bJML=DaN,bNifa=Lifbdb/iX0RaMbDaN,bNifa=Lifbdb/iX0RaMb+Re/iX·˙eJML=DaN,bNifa=Lifbdeb/iX0RaMb
172 109 111 171 3eqtrd φdNeNdRbdb/iX·˙bJML=DaN,bNifa=Lifbdb/iX0RaMbRbdeb/iX·˙bJML=DaN,bNifa=Lifbdeb/iX0RaMb
173 172 ex φdNeNdRbdb/iX·˙bJML=DaN,bNifa=Lifbdb/iX0RaMbRbdeb/iX·˙bJML=DaN,bNifa=Lifbdeb/iX0RaMb
174 18 26 34 42 64 173 56 findcard2d φRbNb/iX·˙bJML=DaN,bNifa=LifbNb/iX0RaMb
175 nfcv _bX·˙iJML
176 nfcsb1v _ib/iX
177 nfcv _i·˙
178 nfcv _ibJML
179 176 177 178 nfov _ib/iX·˙bJML
180 csbeq1a i=bX=b/iX
181 oveq1 i=biJML=bJML
182 180 181 oveq12d i=bX·˙iJML=b/iX·˙bJML
183 175 179 182 cbvmpt iNX·˙iJML=bNb/iX·˙bJML
184 183 oveq2i RiNX·˙iJML=RbNb/iX·˙bJML
185 nfcv _aifj=LXjMi
186 nfcv _bifj=LXjMi
187 nfcv _jifa=Lb/iXaMb
188 nfv ia=L
189 nfcv _iaMb
190 188 176 189 nfif _iifa=Lb/iXaMb
191 eqeq1 j=aj=La=L
192 191 adantr j=ai=bj=La=L
193 180 adantl j=ai=bX=b/iX
194 oveq12 j=ai=bjMi=aMb
195 192 193 194 ifbieq12d j=ai=bifj=LXjMi=ifa=Lb/iXaMb
196 185 186 187 190 195 cbvmpo jN,iNifj=LXjMi=aN,bNifa=Lb/iXaMb
197 iftrue bNifbNb/iX0R=b/iX
198 197 eqcomd bNb/iX=ifbNb/iX0R
199 198 adantl aNbNb/iX=ifbNb/iX0R
200 199 ifeq1d aNbNifa=Lb/iXaMb=ifa=LifbNb/iX0RaMb
201 200 mpoeq3ia aN,bNifa=Lb/iXaMb=aN,bNifa=LifbNb/iX0RaMb
202 196 201 eqtri jN,iNifj=LXjMi=aN,bNifa=LifbNb/iX0RaMb
203 202 fveq2i DjN,iNifj=LXjMi=DaN,bNifa=LifbNb/iX0RaMb
204 174 184 203 3eqtr4g φRiNX·˙iJML=DjN,iNifj=LXjMi