Metamath Proof Explorer


Theorem metustexhalf

Description: For any element A of the filter base generated by the metric D , the half element (corresponding to half the distance) is also in this base. (Contributed by Thierry Arnoux, 28-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis metust.1 F=rana+D-10a
Assertion metustexhalf XDPsMetXAFvFvvA

Proof

Step Hyp Ref Expression
1 metust.1 F=rana+D-10a
2 simp-4r XDPsMetXAFa+A=D-10aDPsMetX
3 simplr XDPsMetXAFa+A=D-10aa+
4 3 rphalfcld XDPsMetXAFa+A=D-10aa2+
5 eqidd XDPsMetXAFa+A=D-10aD-10a2=D-10a2
6 oveq2 b=a20b=0a2
7 6 imaeq2d b=a2D-10b=D-10a2
8 7 rspceeqv a2+D-10a2=D-10a2b+D-10a2=D-10b
9 4 5 8 syl2anc XDPsMetXAFa+A=D-10ab+D-10a2=D-10b
10 oveq2 a=b0a=0b
11 10 imaeq2d a=bD-10a=D-10b
12 11 cbvmptv a+D-10a=b+D-10b
13 12 rneqi rana+D-10a=ranb+D-10b
14 1 13 eqtri F=ranb+D-10b
15 14 metustel DPsMetXD-10a2Fb+D-10a2=D-10b
16 15 biimpar DPsMetXb+D-10a2=D-10bD-10a2F
17 2 9 16 syl2anc XDPsMetXAFa+A=D-10aD-10a2F
18 relco RelD-10a2D-10a2
19 18 a1i XDPsMetXAFa+A=D-10aRelD-10a2D-10a2
20 cossxp D-10a2D-10a2domD-10a2×ranD-10a2
21 cnvimass D-10a2domD
22 psmetf DPsMetXD:X×X*
23 21 22 fssdm DPsMetXD-10a2X×X
24 dmss D-10a2X×XdomD-10a2domX×X
25 rnss D-10a2X×XranD-10a2ranX×X
26 xpss12 domD-10a2domX×XranD-10a2ranX×XdomD-10a2×ranD-10a2domX×X×ranX×X
27 24 25 26 syl2anc D-10a2X×XdomD-10a2×ranD-10a2domX×X×ranX×X
28 23 27 syl DPsMetXdomD-10a2×ranD-10a2domX×X×ranX×X
29 28 adantl XDPsMetXdomD-10a2×ranD-10a2domX×X×ranX×X
30 dmxp XdomX×X=X
31 rnxp XranX×X=X
32 30 31 xpeq12d XdomX×X×ranX×X=X×X
33 32 adantr XDPsMetXdomX×X×ranX×X=X×X
34 29 33 sseqtrd XDPsMetXdomD-10a2×ranD-10a2X×X
35 20 34 sstrid XDPsMetXD-10a2D-10a2X×X
36 35 ad3antrrr XDPsMetXAFa+A=D-10aD-10a2D-10a2X×X
37 36 sselda XDPsMetXAFa+A=D-10apqD-10a2D-10a2pqX×X
38 opelxp pqX×XpXqX
39 37 38 sylib XDPsMetXAFa+A=D-10apqD-10a2D-10a2pXqX
40 simpll XDPsMetXAFa+A=D-10apqD-10a2D-10a2pXqXXDPsMetXAFa+A=D-10a
41 simprl XDPsMetXAFa+A=D-10apqD-10a2D-10a2pXqXpX
42 simprr XDPsMetXAFa+A=D-10apqD-10a2D-10a2pXqXqX
43 simplr XDPsMetXAFa+A=D-10apqD-10a2D-10a2pXqXpqD-10a2D-10a2
44 simplll XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qXDPsMetXAFa+A=D-10apXqX
45 44 simp1d XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qXDPsMetXAFa+A=D-10a
46 45 2 syl XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qDPsMetX
47 45 3 syl XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qa+
48 46 47 jca XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qDPsMetXa+
49 44 simp2d XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qpX
50 44 simp3d XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qqX
51 48 49 50 3jca XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qDPsMetXa+pXqX
52 simplr XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qrX
53 simprl XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qpD-10a2r
54 simprr XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qrD-10a2q
55 simpll DPsMetXa+pXqXrXpD-10a2rrD-10a2qDPsMetXa+pXqX
56 55 simp1d DPsMetXa+pXqXrXpD-10a2rrD-10a2qDPsMetXa+
57 56 simpld DPsMetXa+pXqXrXpD-10a2rrD-10a2qDPsMetX
58 22 ffund DPsMetXFunD
59 57 58 syl DPsMetXa+pXqXrXpD-10a2rrD-10a2qFunD
60 55 simp2d DPsMetXa+pXqXrXpD-10a2rrD-10a2qpX
61 55 simp3d DPsMetXa+pXqXrXpD-10a2rrD-10a2qqX
62 60 61 opelxpd DPsMetXa+pXqXrXpD-10a2rrD-10a2qpqX×X
63 22 fdmd DPsMetXdomD=X×X
64 57 63 syl DPsMetXa+pXqXrXpD-10a2rrD-10a2qdomD=X×X
65 62 64 eleqtrrd DPsMetXa+pXqXrXpD-10a2rrD-10a2qpqdomD
66 0xr 0*
67 66 a1i DPsMetXa+pXqXrXpD-10a2rrD-10a2q0*
68 56 simprd DPsMetXa+pXqXrXpD-10a2rrD-10a2qa+
69 68 rpxrd DPsMetXa+pXqXrXpD-10a2rrD-10a2qa*
70 57 22 syl DPsMetXa+pXqXrXpD-10a2rrD-10a2qD:X×X*
71 70 62 ffvelcdmd DPsMetXa+pXqXrXpD-10a2rrD-10a2qDpq*
72 psmetge0 DPsMetXpXqX0pDq
73 57 60 61 72 syl3anc DPsMetXa+pXqXrXpD-10a2rrD-10a2q0pDq
74 df-ov pDq=Dpq
75 73 74 breqtrdi DPsMetXa+pXqXrXpD-10a2rrD-10a2q0Dpq
76 74 71 eqeltrid DPsMetXa+pXqXrXpD-10a2rrD-10a2qpDq*
77 0red DPsMetXa+pXqXrXpD-10a2rrD-10a2q0
78 68 rpred DPsMetXa+pXqXrXpD-10a2rrD-10a2qa
79 78 rehalfcld DPsMetXa+pXqXrXpD-10a2rrD-10a2qa2
80 79 rexrd DPsMetXa+pXqXrXpD-10a2rrD-10a2qa2*
81 df-ov pDr=Dpr
82 simplr DPsMetXa+pXqXrXpD-10a2rrD-10a2qrX
83 60 82 opelxpd DPsMetXa+pXqXrXpD-10a2rrD-10a2qprX×X
84 83 64 eleqtrrd DPsMetXa+pXqXrXpD-10a2rrD-10a2qprdomD
85 simprl DPsMetXa+pXqXrXpD-10a2rrD-10a2qpD-10a2r
86 df-br pD-10a2rprD-10a2
87 85 86 sylib DPsMetXa+pXqXrXpD-10a2rrD-10a2qprD-10a2
88 fvimacnv FunDprdomDDpr0a2prD-10a2
89 88 biimpar FunDprdomDprD-10a2Dpr0a2
90 59 84 87 89 syl21anc DPsMetXa+pXqXrXpD-10a2rrD-10a2qDpr0a2
91 81 90 eqeltrid DPsMetXa+pXqXrXpD-10a2rrD-10a2qpDr0a2
92 elico2 0a2*pDr0a2pDr0pDrpDr<a2
93 92 biimpa 0a2*pDr0a2pDr0pDrpDr<a2
94 93 simp1d 0a2*pDr0a2pDr
95 77 80 91 94 syl21anc DPsMetXa+pXqXrXpD-10a2rrD-10a2qpDr
96 df-ov rDq=Drq
97 82 61 opelxpd DPsMetXa+pXqXrXpD-10a2rrD-10a2qrqX×X
98 97 64 eleqtrrd DPsMetXa+pXqXrXpD-10a2rrD-10a2qrqdomD
99 simprr DPsMetXa+pXqXrXpD-10a2rrD-10a2qrD-10a2q
100 df-br rD-10a2qrqD-10a2
101 99 100 sylib DPsMetXa+pXqXrXpD-10a2rrD-10a2qrqD-10a2
102 fvimacnv FunDrqdomDDrq0a2rqD-10a2
103 102 biimpar FunDrqdomDrqD-10a2Drq0a2
104 59 98 101 103 syl21anc DPsMetXa+pXqXrXpD-10a2rrD-10a2qDrq0a2
105 96 104 eqeltrid DPsMetXa+pXqXrXpD-10a2rrD-10a2qrDq0a2
106 elico2 0a2*rDq0a2rDq0rDqrDq<a2
107 106 biimpa 0a2*rDq0a2rDq0rDqrDq<a2
108 107 simp1d 0a2*rDq0a2rDq
109 77 80 105 108 syl21anc DPsMetXa+pXqXrXpD-10a2rrD-10a2qrDq
110 95 109 rexaddd DPsMetXa+pXqXrXpD-10a2rrD-10a2qpDr+𝑒rDq=pDr+rDq
111 95 109 readdcld DPsMetXa+pXqXrXpD-10a2rrD-10a2qpDr+rDq
112 110 111 eqeltrd DPsMetXa+pXqXrXpD-10a2rrD-10a2qpDr+𝑒rDq
113 112 rexrd DPsMetXa+pXqXrXpD-10a2rrD-10a2qpDr+𝑒rDq*
114 psmettri DPsMetXpXqXrXpDqpDr+𝑒rDq
115 57 60 61 82 114 syl13anc DPsMetXa+pXqXrXpD-10a2rrD-10a2qpDqpDr+𝑒rDq
116 93 simp3d 0a2*pDr0a2pDr<a2
117 77 80 91 116 syl21anc DPsMetXa+pXqXrXpD-10a2rrD-10a2qpDr<a2
118 107 simp3d 0a2*rDq0a2rDq<a2
119 77 80 105 118 syl21anc DPsMetXa+pXqXrXpD-10a2rrD-10a2qrDq<a2
120 95 109 78 117 119 lt2halvesd DPsMetXa+pXqXrXpD-10a2rrD-10a2qpDr+rDq<a
121 110 120 eqbrtrd DPsMetXa+pXqXrXpD-10a2rrD-10a2qpDr+𝑒rDq<a
122 76 113 69 115 121 xrlelttrd DPsMetXa+pXqXrXpD-10a2rrD-10a2qpDq<a
123 74 122 eqbrtrrid DPsMetXa+pXqXrXpD-10a2rrD-10a2qDpq<a
124 67 69 71 75 123 elicod DPsMetXa+pXqXrXpD-10a2rrD-10a2qDpq0a
125 fvimacnv FunDpqdomDDpq0apqD-10a
126 125 biimpa FunDpqdomDDpq0apqD-10a
127 df-br pD-10aqpqD-10a
128 126 127 sylibr FunDpqdomDDpq0apD-10aq
129 59 65 124 128 syl21anc DPsMetXa+pXqXrXpD-10a2rrD-10a2qpD-10aq
130 51 52 53 54 129 syl22anc XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qpD-10aq
131 45 simprd XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qA=D-10a
132 131 breqd XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qpAqpD-10aq
133 130 132 mpbird XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2qpAq
134 simpr XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2pqD-10a2D-10a2
135 df-br pD-10a2D-10a2qpqD-10a2D-10a2
136 134 135 sylibr XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2pD-10a2D-10a2q
137 vex pV
138 vex qV
139 137 138 brco pD-10a2D-10a2qrpD-10a2rrD-10a2q
140 136 139 sylib XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rpD-10a2rrD-10a2q
141 23 adantl XDPsMetXD-10a2X×X
142 141 25 syl XDPsMetXranD-10a2ranX×X
143 31 adantr XDPsMetXranX×X=X
144 142 143 sseqtrd XDPsMetXranD-10a2X
145 144 adantr XDPsMetXpD-10a2rranD-10a2X
146 vex rV
147 137 146 brelrn pD-10a2rrranD-10a2
148 147 adantl XDPsMetXpD-10a2rrranD-10a2
149 145 148 sseldd XDPsMetXpD-10a2rrX
150 149 adantrr XDPsMetXpD-10a2rrD-10a2qrX
151 150 ex XDPsMetXpD-10a2rrD-10a2qrX
152 151 ancrd XDPsMetXpD-10a2rrD-10a2qrXpD-10a2rrD-10a2q
153 152 eximdv XDPsMetXrpD-10a2rrD-10a2qrrXpD-10a2rrD-10a2q
154 153 ad3antrrr XDPsMetXAFa+A=D-10arpD-10a2rrD-10a2qrrXpD-10a2rrD-10a2q
155 154 3ad2ant1 XDPsMetXAFa+A=D-10apXqXrpD-10a2rrD-10a2qrrXpD-10a2rrD-10a2q
156 155 adantr XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rpD-10a2rrD-10a2qrrXpD-10a2rrD-10a2q
157 140 156 mpd XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rrXpD-10a2rrD-10a2q
158 df-rex rXpD-10a2rrD-10a2qrrXpD-10a2rrD-10a2q
159 157 158 sylibr XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2rXpD-10a2rrD-10a2q
160 133 159 r19.29a XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2pAq
161 df-br pAqpqA
162 160 161 sylib XDPsMetXAFa+A=D-10apXqXpqD-10a2D-10a2pqA
163 40 41 42 43 162 syl31anc XDPsMetXAFa+A=D-10apqD-10a2D-10a2pXqXpqA
164 39 163 mpdan XDPsMetXAFa+A=D-10apqD-10a2D-10a2pqA
165 164 ex XDPsMetXAFa+A=D-10apqD-10a2D-10a2pqA
166 19 165 relssdv XDPsMetXAFa+A=D-10aD-10a2D-10a2A
167 id v=D-10a2v=D-10a2
168 167 167 coeq12d v=D-10a2vv=D-10a2D-10a2
169 168 sseq1d v=D-10a2vvAD-10a2D-10a2A
170 169 rspcev D-10a2FD-10a2D-10a2AvFvvA
171 17 166 170 syl2anc XDPsMetXAFa+A=D-10avFvvA
172 1 metustel DPsMetXAFa+A=D-10a
173 172 adantl XDPsMetXAFa+A=D-10a
174 173 biimpa XDPsMetXAFa+A=D-10a
175 171 174 r19.29a XDPsMetXAFvFvvA