Metamath Proof Explorer


Theorem noetainflem4

Description: Lemma for noeta . If A precedes B , then W is greater than A . (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypotheses noetainflem.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
noetainflem.2 W=TsucbdayAdomT×2𝑜
Assertion noetainflem4 ANoAVBNoBVaAbBa<sbaAa<sW

Proof

Step Hyp Ref Expression
1 noetainflem.1 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
2 noetainflem.2 W=TsucbdayAdomT×2𝑜
3 simplrl ANoAVBNoBVaABNo
4 simplrr ANoAVBNoBVaABV
5 simpll ANoAVBNoBVANo
6 5 sselda ANoAVBNoBVaAaNo
7 1 noinfbnd2 BNoBVaNobBa<sb¬T<sadomT
8 3 4 6 7 syl3anc ANoAVBNoBVaAbBa<sb¬T<sadomT
9 simplll ANoAVBNoBVaA¬T<sadomTANo
10 simprl ANoAVBNoBVaA¬T<sadomTaA
11 9 10 sseldd ANoAVBNoBVaA¬T<sadomTaNo
12 nodmord aNoOrddoma
13 ordirr Orddoma¬domadoma
14 11 12 13 3syl ANoAVBNoBVaA¬T<sadomT¬domadoma
15 bdayval aNobdaya=doma
16 11 15 syl ANoAVBNoBVaA¬T<sadomTbdaya=doma
17 bdayfo bday:NoontoOn
18 fofn bday:NoontoOnbdayFnNo
19 17 18 ax-mp bdayFnNo
20 fnfvima bdayFnNoANoaAbdayabdayA
21 19 9 10 20 mp3an2i ANoAVBNoBVaA¬T<sadomTbdayabdayA
22 16 21 eqeltrrd ANoAVBNoBVaA¬T<sadomTdomabdayA
23 elssuni domabdayAdomabdayA
24 22 23 syl ANoAVBNoBVaA¬T<sadomTdomabdayA
25 nodmon aNodomaOn
26 imassrn bdayAranbday
27 forn bday:NoontoOnranbday=On
28 17 27 ax-mp ranbday=On
29 26 28 sseqtri bdayAOn
30 ssorduni bdayAOnOrdbdayA
31 29 30 ax-mp OrdbdayA
32 ordsssuc domaOnOrdbdayAdomabdayAdomasucbdayA
33 31 32 mpan2 domaOndomabdayAdomasucbdayA
34 11 25 33 3syl ANoAVBNoBVaA¬T<sadomTdomabdayAdomasucbdayA
35 24 34 mpbid ANoAVBNoBVaA¬T<sadomTdomasucbdayA
36 elun2 domasucbdayAdomadomTsucbdayA
37 35 36 syl ANoAVBNoBVaA¬T<sadomTdomadomTsucbdayA
38 eleq2 doma=domTsucbdayAdomadomadomadomTsucbdayA
39 37 38 syl5ibrcom ANoAVBNoBVaA¬T<sadomTdoma=domTsucbdayAdomadoma
40 14 39 mtod ANoAVBNoBVaA¬T<sadomT¬doma=domTsucbdayA
41 dmeq a=Wdoma=domW
42 2 dmeqi domW=domTsucbdayAdomT×2𝑜
43 dmun domTsucbdayAdomT×2𝑜=domTdomsucbdayAdomT×2𝑜
44 2oex 2𝑜V
45 44 snnz 2𝑜
46 dmxp 2𝑜domsucbdayAdomT×2𝑜=sucbdayAdomT
47 45 46 ax-mp domsucbdayAdomT×2𝑜=sucbdayAdomT
48 47 uneq2i domTdomsucbdayAdomT×2𝑜=domTsucbdayAdomT
49 undif2 domTsucbdayAdomT=domTsucbdayA
50 48 49 eqtri domTdomsucbdayAdomT×2𝑜=domTsucbdayA
51 42 43 50 3eqtri domW=domTsucbdayA
52 41 51 eqtrdi a=Wdoma=domTsucbdayA
53 40 52 nsyl ANoAVBNoBVaA¬T<sadomT¬a=W
54 53 neqned ANoAVBNoBVaA¬T<sadomTaW
55 simpr ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTpOn|apWpdomT
56 11 adantr ANoAVBNoBVaA¬T<sadomTaWaNo
57 56 adantr ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTaNo
58 simp-4r ANoAVBNoBVaA¬T<sadomTaWAV
59 simplrl ANoAVBNoBVaA¬T<sadomTBNo
60 59 adantr ANoAVBNoBVaA¬T<sadomTaWBNo
61 simplrr ANoAVBNoBVaA¬T<sadomTBV
62 61 adantr ANoAVBNoBVaA¬T<sadomTaWBV
63 1 2 noetainflem1 AVBNoBVWNo
64 58 60 62 63 syl3anc ANoAVBNoBVaA¬T<sadomTaWWNo
65 64 adantr ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTWNo
66 simplr ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTaW
67 nosepne aNoWNoaWapOn|apWpWpOn|apWp
68 57 65 66 67 syl3anc ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTapOn|apWpWpOn|apWp
69 55 fvresd ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTWdomTpOn|apWp=WpOn|apWp
70 simp-4r ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTBNoBV
71 1 2 noetainflem2 BNoBVWdomT=T
72 70 71 syl ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTWdomT=T
73 72 fveq1d ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTWdomTpOn|apWp=TpOn|apWp
74 69 73 eqtr3d ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTWpOn|apWp=TpOn|apWp
75 68 74 neeqtrd ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTapOn|apWpTpOn|apWp
76 75 necomd ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTTpOn|apWpapOn|apWp
77 fveq2 q=pOn|apWpTq=TpOn|apWp
78 fveq2 q=pOn|apWpaq=apOn|apWp
79 77 78 neeq12d q=pOn|apWpTqaqTpOn|apWpapOn|apWp
80 79 rspcev pOn|apWpdomTTpOn|apWpapOn|apWpqdomTTqaq
81 55 76 80 syl2anc ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTqdomTTqaq
82 df-ne TqadomTq¬Tq=adomTq
83 fvres qdomTadomTq=aq
84 83 neeq2d qdomTTqadomTqTqaq
85 82 84 bitr3id qdomT¬Tq=adomTqTqaq
86 85 rexbiia qdomT¬Tq=adomTqqdomTTqaq
87 rexnal qdomT¬Tq=adomTq¬qdomTTq=adomTq
88 86 87 bitr3i qdomTTqaq¬qdomTTq=adomTq
89 81 88 sylib ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomT¬qdomTTq=adomTq
90 89 olcd ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomT¬domT=domadomT¬qdomTTq=adomTq
91 1 noinfno BNoBVTNo
92 91 ad3antlr ANoAVBNoBVaA¬T<sadomTaWTNo
93 92 adantr ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTTNo
94 nofun TNoFunT
95 93 94 syl ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTFunT
96 nofun aNoFuna
97 funres FunaFunadomT
98 57 96 97 3syl ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTFunadomT
99 eqfunfv FunTFunadomTT=adomTdomT=domadomTqdomTTq=adomTq
100 95 98 99 syl2anc ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTT=adomTdomT=domadomTqdomTTq=adomTq
101 ianor ¬domT=domadomTqdomTTq=adomTq¬domT=domadomT¬qdomTTq=adomTq
102 101 con1bii ¬¬domT=domadomT¬qdomTTq=adomTqdomT=domadomTqdomTTq=adomTq
103 100 102 bitr4di ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTT=adomT¬¬domT=domadomT¬qdomTTq=adomTq
104 103 con2bid ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomT¬domT=domadomT¬qdomTTq=adomTq¬T=adomT
105 90 104 mpbid ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomT¬T=adomT
106 105 pm2.21d ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTT=adomTa<sW
107 72 breq2d ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTadomT<sWdomTadomT<sT
108 nodmon TNodomTOn
109 92 108 syl ANoAVBNoBVaA¬T<sadomTaWdomTOn
110 109 adantr ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTdomTOn
111 sltres aNoWNodomTOnadomT<sWdomTa<sW
112 57 65 110 111 syl3anc ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTadomT<sWdomTa<sW
113 107 112 sylbird ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTadomT<sTa<sW
114 simplrr ANoAVBNoBVaA¬T<sadomTaW¬T<sadomT
115 114 adantr ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomT¬T<sadomT
116 noreson aNodomTOnadomTNo
117 56 109 116 syl2anc ANoAVBNoBVaA¬T<sadomTaWadomTNo
118 117 adantr ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTadomTNo
119 sltso <sOrNo
120 sotric <sOrNoTNoadomTNoT<sadomT¬T=adomTadomT<sT
121 119 120 mpan TNoadomTNoT<sadomT¬T=adomTadomT<sT
122 93 118 121 syl2anc ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTT<sadomT¬T=adomTadomT<sT
123 122 con2bid ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTT=adomTadomT<sT¬T<sadomT
124 115 123 mpbird ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTT=adomTadomT<sT
125 106 113 124 mpjaod ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTa<sW
126 64 adantr ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpWNo
127 56 adantr ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpaNo
128 simplr ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpaW
129 128 necomd ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpWa
130 2 fveq1i WpOn|apWp=TsucbdayAdomT×2𝑜pOn|apWp
131 92 adantr ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpTNo
132 131 94 syl ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpFunT
133 132 funfnd ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpTFndomT
134 fnconstg 2𝑜VsucbdayAdomT×2𝑜FnsucbdayAdomT
135 44 134 ax-mp sucbdayAdomT×2𝑜FnsucbdayAdomT
136 135 a1i ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpsucbdayAdomT×2𝑜FnsucbdayAdomT
137 disjdif domTsucbdayAdomT=
138 137 a1i ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpdomTsucbdayAdomT=
139 nosepssdm aNoWNoaWpOn|apWpdoma
140 127 126 128 139 syl3anc ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWppOn|apWpdoma
141 127 15 syl ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpbdaya=doma
142 simp-5l ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpANo
143 simplrl ANoAVBNoBVaA¬T<sadomTaWaA
144 143 adantr ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpaA
145 19 142 144 20 mp3an2i ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpbdayabdayA
146 elssuni bdayabdayAbdayabdayA
147 145 146 syl ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpbdayabdayA
148 141 147 eqsstrrd ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpdomabdayA
149 127 25 33 3syl ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpdomabdayAdomasucbdayA
150 148 149 mpbid ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpdomasucbdayA
151 simpr ANoAVBNoBVaA¬T<sadomTaWaW
152 nosepon aNoWNoaWpOn|apWpOn
153 56 64 151 152 syl3anc ANoAVBNoBVaA¬T<sadomTaWpOn|apWpOn
154 153 adantr ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWppOn|apWpOn
155 eloni pOn|apWpOnOrdpOn|apWp
156 ordsuc OrdbdayAOrdsucbdayA
157 31 156 mpbi OrdsucbdayA
158 ordtr2 OrdpOn|apWpOrdsucbdayApOn|apWpdomadomasucbdayApOn|apWpsucbdayA
159 157 158 mpan2 OrdpOn|apWppOn|apWpdomadomasucbdayApOn|apWpsucbdayA
160 154 155 159 3syl ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWppOn|apWpdomadomasucbdayApOn|apWpsucbdayA
161 140 150 160 mp2and ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWppOn|apWpsucbdayA
162 ontri1 domTOnpOn|apWpOndomTpOn|apWp¬pOn|apWpdomT
163 109 153 162 syl2anc ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWp¬pOn|apWpdomT
164 163 biimpa ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWp¬pOn|apWpdomT
165 161 164 eldifd ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWppOn|apWpsucbdayAdomT
166 133 136 138 165 fvun2d ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpTsucbdayAdomT×2𝑜pOn|apWp=sucbdayAdomT×2𝑜pOn|apWp
167 44 fvconst2 pOn|apWpsucbdayAdomTsucbdayAdomT×2𝑜pOn|apWp=2𝑜
168 165 167 syl ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpsucbdayAdomT×2𝑜pOn|apWp=2𝑜
169 166 168 eqtrd ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpTsucbdayAdomT×2𝑜pOn|apWp=2𝑜
170 130 169 eqtrid ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpWpOn|apWp=2𝑜
171 nosep2o WNoaNoWaWpOn|apWp=2𝑜a<sW
172 126 127 129 170 171 syl31anc ANoAVBNoBVaA¬T<sadomTaWdomTpOn|apWpa<sW
173 153 155 syl ANoAVBNoBVaA¬T<sadomTaWOrdpOn|apWp
174 nodmord TNoOrddomT
175 92 174 syl ANoAVBNoBVaA¬T<sadomTaWOrddomT
176 ordtri2or OrdpOn|apWpOrddomTpOn|apWpdomTdomTpOn|apWp
177 173 175 176 syl2anc ANoAVBNoBVaA¬T<sadomTaWpOn|apWpdomTdomTpOn|apWp
178 125 172 177 mpjaodan ANoAVBNoBVaA¬T<sadomTaWa<sW
179 54 178 mpdan ANoAVBNoBVaA¬T<sadomTa<sW
180 179 expr ANoAVBNoBVaA¬T<sadomTa<sW
181 8 180 sylbid ANoAVBNoBVaAbBa<sba<sW
182 181 ralimdva ANoAVBNoBVaAbBa<sbaAa<sW
183 182 3impia ANoAVBNoBVaAbBa<sbaAa<sW