Metamath Proof Explorer


Theorem noinfbnd2lem1

Description: Bounding law from below when a set of surreals has a minimum. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Assertion noinfbnd2lem1 UByB¬y<sUBNoBVZNobBZ<sb¬UdomU1𝑜<sZsucdomU

Proof

Step Hyp Ref Expression
1 breq2 b=UZ<sbZ<sU
2 simp3 UByB¬y<sUBNoBVZNobBZ<sbbBZ<sb
3 simp1l UByB¬y<sUBNoBVZNobBZ<sbUB
4 1 2 3 rspcdva UByB¬y<sUBNoBVZNobBZ<sbZ<sU
5 simpl21 UByB¬y<sUBNoBVZNobBZ<sbZ<sUBNo
6 simpl1l UByB¬y<sUBNoBVZNobBZ<sbZ<sUUB
7 5 6 sseldd UByB¬y<sUBNoBVZNobBZ<sbZ<sUUNo
8 nodmon UNodomUOn
9 7 8 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUdomUOn
10 onelon domUOnxOn|UxZxdomUxOn|UxZxOn
11 9 10 sylan UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUxOn|UxZxOn
12 simpr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUqxOn|UxZxqxOn|UxZx
13 simplr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUqxOn|UxZxxOn|UxZxdomU
14 9 adantr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUdomUOn
15 14 adantr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUqxOn|UxZxdomUOn
16 ontr1 domUOnqxOn|UxZxxOn|UxZxdomUqdomU
17 15 16 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUqxOn|UxZxqxOn|UxZxxOn|UxZxdomUqdomU
18 12 13 17 mp2and UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUqxOn|UxZxqdomU
19 18 fvresd UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUqxOn|UxZxZdomUq=Zq
20 onelon xOn|UxZxOnqxOn|UxZxqOn
21 11 20 sylan UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUqxOn|UxZxqOn
22 fveq2 x=qUx=Uq
23 fveq2 x=qZx=Zq
24 22 23 neeq12d x=qUxZxUqZq
25 24 onnminsb qOnqxOn|UxZx¬UqZq
26 21 12 25 sylc UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUqxOn|UxZx¬UqZq
27 df-ne UqZq¬Uq=Zq
28 27 con2bii Uq=Zq¬UqZq
29 26 28 sylibr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUqxOn|UxZxUq=Zq
30 19 29 eqtr4d UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUqxOn|UxZxZdomUq=Uq
31 30 ralrimiva UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUqxOn|UxZxZdomUq=Uq
32 simpr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUxOn|UxZxdomU
33 32 fvresd UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZdomUxOn|UxZx=ZxOn|UxZx
34 simplr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZ<sU
35 simpl23 UByB¬y<sUBNoBVZNobBZ<sbZ<sUZNo
36 7 adantr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUUNo
37 sltval2 ZNoUNoZ<sUZxOn|ZxUx1𝑜1𝑜2𝑜2𝑜UxOn|ZxUx
38 35 36 37 syl2an2r UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZ<sUZxOn|ZxUx1𝑜1𝑜2𝑜2𝑜UxOn|ZxUx
39 34 38 mpbid UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZxOn|ZxUx1𝑜1𝑜2𝑜2𝑜UxOn|ZxUx
40 necom UxZxZxUx
41 40 rabbii xOn|UxZx=xOn|ZxUx
42 41 inteqi xOn|UxZx=xOn|ZxUx
43 42 fveq2i ZxOn|UxZx=ZxOn|ZxUx
44 42 fveq2i UxOn|UxZx=UxOn|ZxUx
45 39 43 44 3brtr4g UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZxOn|UxZx1𝑜1𝑜2𝑜2𝑜UxOn|UxZx
46 33 45 eqbrtrd UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZdomUxOn|UxZx1𝑜1𝑜2𝑜2𝑜UxOn|UxZx
47 raleq p=xOn|UxZxqpZdomUq=UqqxOn|UxZxZdomUq=Uq
48 fveq2 p=xOn|UxZxZdomUp=ZdomUxOn|UxZx
49 fveq2 p=xOn|UxZxUp=UxOn|UxZx
50 48 49 breq12d p=xOn|UxZxZdomUp1𝑜1𝑜2𝑜2𝑜UpZdomUxOn|UxZx1𝑜1𝑜2𝑜2𝑜UxOn|UxZx
51 47 50 anbi12d p=xOn|UxZxqpZdomUq=UqZdomUp1𝑜1𝑜2𝑜2𝑜UpqxOn|UxZxZdomUq=UqZdomUxOn|UxZx1𝑜1𝑜2𝑜2𝑜UxOn|UxZx
52 51 rspcev xOn|UxZxOnqxOn|UxZxZdomUq=UqZdomUxOn|UxZx1𝑜1𝑜2𝑜2𝑜UxOn|UxZxpOnqpZdomUq=UqZdomUp1𝑜1𝑜2𝑜2𝑜Up
53 11 31 46 52 syl12anc UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUpOnqpZdomUq=UqZdomUp1𝑜1𝑜2𝑜2𝑜Up
54 noreson ZNodomUOnZdomUNo
55 35 9 54 syl2anc UByB¬y<sUBNoBVZNobBZ<sbZ<sUZdomUNo
56 sltval ZdomUNoUNoZdomU<sUpOnqpZdomUq=UqZdomUp1𝑜1𝑜2𝑜2𝑜Up
57 55 36 56 syl2an2r UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZdomU<sUpOnqpZdomUq=UqZdomUp1𝑜1𝑜2𝑜2𝑜Up
58 53 57 mpbird UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZdomU<sU
59 sssucid domUsucdomU
60 resabs1 domUsucdomUZsucdomUdomU=ZdomU
61 59 60 mp1i UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZsucdomUdomU=ZdomU
62 resundir UdomU1𝑜domU=UdomUdomU1𝑜domU
63 nofun UNoFunU
64 7 63 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUFunU
65 funrel FunURelU
66 64 65 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sURelU
67 66 adantr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomURelU
68 resdm RelUUdomU=U
69 67 68 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUUdomU=U
70 nodmord UNoOrddomU
71 7 70 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUOrddomU
72 71 adantr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUOrddomU
73 ordirr OrddomU¬domUdomU
74 72 73 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomU¬domUdomU
75 1oex 1𝑜V
76 75 snres0 domU1𝑜domU=¬domUdomU
77 74 76 sylibr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUdomU1𝑜domU=
78 69 77 uneq12d UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUUdomUdomU1𝑜domU=U
79 un0 U=U
80 78 79 eqtrdi UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUUdomUdomU1𝑜domU=U
81 62 80 eqtrid UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUUdomU1𝑜domU=U
82 58 61 81 3brtr4d UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZsucdomUdomU<sUdomU1𝑜domU
83 onsucb domUOnsucdomUOn
84 9 83 sylib UByB¬y<sUBNoBVZNobBZ<sbZ<sUsucdomUOn
85 noreson ZNosucdomUOnZsucdomUNo
86 35 84 85 syl2anc UByB¬y<sUBNoBVZNobBZ<sbZ<sUZsucdomUNo
87 86 adantr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZsucdomUNo
88 75 prid1 1𝑜1𝑜2𝑜
89 88 noextend UNoUdomU1𝑜No
90 7 89 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUUdomU1𝑜No
91 90 adantr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUUdomU1𝑜No
92 sltres ZsucdomUNoUdomU1𝑜NodomUOnZsucdomUdomU<sUdomU1𝑜domUZsucdomU<sUdomU1𝑜
93 87 91 14 92 syl3anc UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZsucdomUdomU<sUdomU1𝑜domUZsucdomU<sUdomU1𝑜
94 82 93 mpd UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZsucdomU<sUdomU1𝑜
95 sltso <sOrNo
96 soasym <sOrNoZsucdomUNoUdomU1𝑜NoZsucdomU<sUdomU1𝑜¬UdomU1𝑜<sZsucdomU
97 95 96 mpan ZsucdomUNoUdomU1𝑜NoZsucdomU<sUdomU1𝑜¬UdomU1𝑜<sZsucdomU
98 86 91 97 syl2an2r UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUZsucdomU<sUdomU1𝑜¬UdomU1𝑜<sZsucdomU
99 94 98 mpd UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomU¬UdomU1𝑜<sZsucdomU
100 sonr <sOrNoUdomU1𝑜No¬UdomU1𝑜<sUdomU1𝑜
101 95 90 100 sylancr UByB¬y<sUBNoBVZNobBZ<sbZ<sU¬UdomU1𝑜<sUdomU1𝑜
102 101 adantr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domU¬UdomU1𝑜<sUdomU1𝑜
103 df-suc sucdomU=domUdomU
104 103 reseq2i ZsucdomU=ZdomUdomU
105 resundi ZdomUdomU=ZdomUZdomU
106 104 105 eqtri ZsucdomU=ZdomUZdomU
107 dmres domZdomU=domUdomZ
108 42 eqeq1i xOn|UxZx=domUxOn|ZxUx=domU
109 108 biimpi xOn|UxZx=domUxOn|ZxUx=domU
110 109 adantl UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUxOn|ZxUx=domU
111 35 adantr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZNo
112 7 adantr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUUNo
113 simp23 UByB¬y<sUBNoBVZNobBZ<sbZNo
114 sonr <sOrNoZNo¬Z<sZ
115 95 113 114 sylancr UByB¬y<sUBNoBVZNobBZ<sb¬Z<sZ
116 breq2 U=ZZ<sUZ<sZ
117 116 notbid U=Z¬Z<sU¬Z<sZ
118 115 117 syl5ibrcom UByB¬y<sUBNoBVZNobBZ<sbU=Z¬Z<sU
119 118 necon2ad UByB¬y<sUBNoBVZNobBZ<sbZ<sUUZ
120 119 imp UByB¬y<sUBNoBVZNobBZ<sbZ<sUUZ
121 120 necomd UByB¬y<sUBNoBVZNobBZ<sbZ<sUZU
122 121 adantr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZU
123 nosepssdm ZNoUNoZUxOn|ZxUxdomZ
124 111 112 122 123 syl3anc UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUxOn|ZxUxdomZ
125 110 124 eqsstrrd UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUdomUdomZ
126 df-ss domUdomZdomUdomZ=domU
127 125 126 sylib UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUdomUdomZ=domU
128 107 127 eqtrid UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUdomZdomU=domU
129 128 eleq2d UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUqdomZdomUqdomU
130 simpr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUqdomUqdomU
131 130 fvresd UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUqdomUZdomUq=Zq
132 112 8 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUdomUOn
133 onelon domUOnqdomUqOn
134 132 133 sylan UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUqdomUqOn
135 simpr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUxOn|UxZx=domU
136 135 eleq2d UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUqxOn|UxZxqdomU
137 136 biimpar UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUqdomUqxOn|UxZx
138 134 137 25 sylc UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUqdomU¬UqZq
139 nesym UqZq¬Zq=Uq
140 139 con2bii Zq=Uq¬UqZq
141 138 140 sylibr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUqdomUZq=Uq
142 131 141 eqtrd UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUqdomUZdomUq=Uq
143 142 ex UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUqdomUZdomUq=Uq
144 129 143 sylbid UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUqdomZdomUZdomUq=Uq
145 144 ralrimiv UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUqdomZdomUZdomUq=Uq
146 nofun ZNoFunZ
147 111 146 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUFunZ
148 147 funresd UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUFunZdomU
149 64 adantr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUFunU
150 eqfunfv FunZdomUFunUZdomU=UdomZdomU=domUqdomZdomUZdomUq=Uq
151 148 149 150 syl2anc UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZdomU=UdomZdomU=domUqdomZdomUZdomUq=Uq
152 128 145 151 mpbir2and UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZdomU=U
153 35 146 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUFunZ
154 153 funfnd UByB¬y<sUBNoBVZNobBZ<sbZ<sUZFndomZ
155 112 70 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUOrddomU
156 155 73 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domU¬domUdomU
157 ndmfv ¬domUdomUUdomU=
158 2on0 2𝑜
159 158 necomi 2𝑜
160 neeq1 UdomU=UdomU2𝑜2𝑜
161 159 160 mpbiri UdomU=UdomU2𝑜
162 161 neneqd UdomU=¬UdomU=2𝑜
163 157 162 syl ¬domUdomU¬UdomU=2𝑜
164 156 163 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domU¬UdomU=2𝑜
165 164 intnand UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domU¬ZdomU=UdomU=2𝑜
166 simpr UByB¬y<sUBNoBVZNobBZ<sbZ<sUZ<sU
167 35 7 37 syl2anc UByB¬y<sUBNoBVZNobBZ<sbZ<sUZ<sUZxOn|ZxUx1𝑜1𝑜2𝑜2𝑜UxOn|ZxUx
168 166 167 mpbid UByB¬y<sUBNoBVZNobBZ<sbZ<sUZxOn|ZxUx1𝑜1𝑜2𝑜2𝑜UxOn|ZxUx
169 168 adantr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZxOn|ZxUx1𝑜1𝑜2𝑜2𝑜UxOn|ZxUx
170 110 fveq2d UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZxOn|ZxUx=ZdomU
171 110 fveq2d UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUUxOn|ZxUx=UdomU
172 169 170 171 3brtr3d UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZdomU1𝑜1𝑜2𝑜2𝑜UdomU
173 fvex ZdomUV
174 fvex UdomUV
175 173 174 brtp ZdomU1𝑜1𝑜2𝑜2𝑜UdomUZdomU=1𝑜UdomU=ZdomU=1𝑜UdomU=2𝑜ZdomU=UdomU=2𝑜
176 172 175 sylib UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZdomU=1𝑜UdomU=ZdomU=1𝑜UdomU=2𝑜ZdomU=UdomU=2𝑜
177 3orel3 ¬ZdomU=UdomU=2𝑜ZdomU=1𝑜UdomU=ZdomU=1𝑜UdomU=2𝑜ZdomU=UdomU=2𝑜ZdomU=1𝑜UdomU=ZdomU=1𝑜UdomU=2𝑜
178 165 176 177 sylc UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZdomU=1𝑜UdomU=ZdomU=1𝑜UdomU=2𝑜
179 andi ZdomU=1𝑜UdomU=UdomU=2𝑜ZdomU=1𝑜UdomU=ZdomU=1𝑜UdomU=2𝑜
180 178 179 sylibr UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZdomU=1𝑜UdomU=UdomU=2𝑜
181 180 simpld UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZdomU=1𝑜
182 ndmfv ¬domUdomZZdomU=
183 1n0 1𝑜
184 183 necomi 1𝑜
185 neeq1 ZdomU=ZdomU1𝑜1𝑜
186 184 185 mpbiri ZdomU=ZdomU1𝑜
187 186 neneqd ZdomU=¬ZdomU=1𝑜
188 182 187 syl ¬domUdomZ¬ZdomU=1𝑜
189 188 con4i ZdomU=1𝑜domUdomZ
190 181 189 syl UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUdomUdomZ
191 fnressn ZFndomZdomUdomZZdomU=domUZdomU
192 154 190 191 syl2an2r UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZdomU=domUZdomU
193 181 opeq2d UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUdomUZdomU=domU1𝑜
194 193 sneqd UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUdomUZdomU=domU1𝑜
195 192 194 eqtrd UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZdomU=domU1𝑜
196 152 195 uneq12d UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZdomUZdomU=UdomU1𝑜
197 106 196 eqtrid UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUZsucdomU=UdomU1𝑜
198 197 breq2d UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domUUdomU1𝑜<sZsucdomUUdomU1𝑜<sUdomU1𝑜
199 102 198 mtbird UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZx=domU¬UdomU1𝑜<sZsucdomU
200 nosepssdm UNoZNoUZxOn|UxZxdomU
201 7 35 120 200 syl3anc UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomU
202 nosepon UNoZNoUZxOn|UxZxOn
203 7 35 120 202 syl3anc UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxOn
204 onsseleq xOn|UxZxOndomUOnxOn|UxZxdomUxOn|UxZxdomUxOn|UxZx=domU
205 203 9 204 syl2anc UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUxOn|UxZxdomUxOn|UxZx=domU
206 201 205 mpbid UByB¬y<sUBNoBVZNobBZ<sbZ<sUxOn|UxZxdomUxOn|UxZx=domU
207 99 199 206 mpjaodan UByB¬y<sUBNoBVZNobBZ<sbZ<sU¬UdomU1𝑜<sZsucdomU
208 4 207 mpdan UByB¬y<sUBNoBVZNobBZ<sb¬UdomU1𝑜<sZsucdomU