Metamath Proof Explorer


Theorem numedglnl

Description: The number of edges incident with a vertex N is the number of edges joining N with other vertices and the number of loops on N in a pseudograph of finite size. (Contributed by AV, 19-Dec-2021)

Ref Expression
Hypotheses edglnl.v V=VtxG
edglnl.e E=iEdgG
Assertion numedglnl GUPGraphVFinEFinNVvVNidomE|NEivEi+idomE|Ei=N=idomE|NEi

Proof

Step Hyp Ref Expression
1 edglnl.v V=VtxG
2 edglnl.e E=iEdgG
3 diffi VFinVNFin
4 3 adantr VFinEFinVNFin
5 4 3ad2ant2 GUPGraphVFinEFinNVVNFin
6 dmfi EFindomEFin
7 rabfi domEFinidomE|NEivEiFin
8 6 7 syl EFinidomE|NEivEiFin
9 8 adantl VFinEFinidomE|NEivEiFin
10 9 3ad2ant2 GUPGraphVFinEFinNVidomE|NEivEiFin
11 10 adantr GUPGraphVFinEFinNVvVNidomE|NEivEiFin
12 notnotb NEi¬¬NEi
13 notnotb vEi¬¬vEi
14 upgruhgr GUPGraphGUHGraph
15 2 uhgrfun GUHGraphFunE
16 14 15 syl GUPGraphFunE
17 2 iedgedg FunEidomEEiEdgG
18 16 17 sylan GUPGraphidomEEiEdgG
19 eqid EdgG=EdgG
20 1 19 upgredg GUPGraphEiEdgGmVnVEi=mn
21 18 20 syldan GUPGraphidomEmVnVEi=mn
22 21 ex GUPGraphidomEmVnVEi=mn
23 22 3ad2ant1 GUPGraphVFinEFinNVidomEmVnVEi=mn
24 23 adantr GUPGraphVFinEFinNVvVNwVNidomEmVnVEi=mn
25 24 adantr GUPGraphVFinEFinNVvVNwVN¬v=widomEmVnVEi=mn
26 25 imp GUPGraphVFinEFinNVvVNwVN¬v=widomEmVnVEi=mn
27 eldifsni vVNvN
28 eldifsni wVNwN
29 3elpr2eq NmnvmnwmnvNwNv=w
30 29 expcom vNwNNmnvmnwmnv=w
31 30 3expd vNwNNmnvmnwmnv=w
32 31 com23 vNwNvmnNmnwmnv=w
33 32 3imp vNwNvmnNmnwmnv=w
34 33 con3d vNwNvmnNmn¬v=w¬wmn
35 34 3exp vNwNvmnNmn¬v=w¬wmn
36 35 com24 vNwN¬v=wNmnvmn¬wmn
37 36 imp vNwN¬v=wNmnvmn¬wmn
38 eleq2 Ei=mnNEiNmn
39 eleq2 Ei=mnvEivmn
40 eleq2 Ei=mnwEiwmn
41 40 notbid Ei=mn¬wEi¬wmn
42 39 41 imbi12d Ei=mnvEi¬wEivmn¬wmn
43 38 42 imbi12d Ei=mnNEivEi¬wEiNmnvmn¬wmn
44 37 43 syl5ibrcom vNwN¬v=wEi=mnNEivEi¬wEi
45 44 adantr vNwN¬v=wmVnVEi=mnNEivEi¬wEi
46 45 rexlimdvva vNwN¬v=wmVnVEi=mnNEivEi¬wEi
47 46 ex vNwN¬v=wmVnVEi=mnNEivEi¬wEi
48 27 28 47 syl2an vVNwVN¬v=wmVnVEi=mnNEivEi¬wEi
49 48 adantl GUPGraphVFinEFinNVvVNwVN¬v=wmVnVEi=mnNEivEi¬wEi
50 49 imp GUPGraphVFinEFinNVvVNwVN¬v=wmVnVEi=mnNEivEi¬wEi
51 50 adantr GUPGraphVFinEFinNVvVNwVN¬v=widomEmVnVEi=mnNEivEi¬wEi
52 26 51 mpd GUPGraphVFinEFinNVvVNwVN¬v=widomENEivEi¬wEi
53 52 imp GUPGraphVFinEFinNVvVNwVN¬v=widomENEivEi¬wEi
54 13 53 biimtrrid GUPGraphVFinEFinNVvVNwVN¬v=widomENEi¬¬vEi¬wEi
55 54 orrd GUPGraphVFinEFinNVvVNwVN¬v=widomENEi¬vEi¬wEi
56 55 ex GUPGraphVFinEFinNVvVNwVN¬v=widomENEi¬vEi¬wEi
57 12 56 biimtrrid GUPGraphVFinEFinNVvVNwVN¬v=widomE¬¬NEi¬vEi¬wEi
58 57 orrd GUPGraphVFinEFinNVvVNwVN¬v=widomE¬NEi¬vEi¬wEi
59 anandi NEivEiwEiNEivEiNEiwEi
60 59 bicomi NEivEiNEiwEiNEivEiwEi
61 60 notbii ¬NEivEiNEiwEi¬NEivEiwEi
62 ianor ¬NEivEiwEi¬NEi¬vEiwEi
63 ianor ¬vEiwEi¬vEi¬wEi
64 63 orbi2i ¬NEi¬vEiwEi¬NEi¬vEi¬wEi
65 61 62 64 3bitri ¬NEivEiNEiwEi¬NEi¬vEi¬wEi
66 58 65 sylibr GUPGraphVFinEFinNVvVNwVN¬v=widomE¬NEivEiNEiwEi
67 66 ralrimiva GUPGraphVFinEFinNVvVNwVN¬v=widomE¬NEivEiNEiwEi
68 inrab idomE|NEivEiidomE|NEiwEi=idomE|NEivEiNEiwEi
69 68 eqeq1i idomE|NEivEiidomE|NEiwEi=idomE|NEivEiNEiwEi=
70 rabeq0 idomE|NEivEiNEiwEi=idomE¬NEivEiNEiwEi
71 69 70 bitri idomE|NEivEiidomE|NEiwEi=idomE¬NEivEiNEiwEi
72 67 71 sylibr GUPGraphVFinEFinNVvVNwVN¬v=widomE|NEivEiidomE|NEiwEi=
73 72 ex GUPGraphVFinEFinNVvVNwVN¬v=widomE|NEivEiidomE|NEiwEi=
74 73 orrd GUPGraphVFinEFinNVvVNwVNv=widomE|NEivEiidomE|NEiwEi=
75 74 ralrimivva GUPGraphVFinEFinNVvVNwVNv=widomE|NEivEiidomE|NEiwEi=
76 eleq1w v=wvEiwEi
77 76 anbi2d v=wNEivEiNEiwEi
78 77 rabbidv v=widomE|NEivEi=idomE|NEiwEi
79 78 disjor DisjvVNidomE|NEivEivVNwVNv=widomE|NEivEiidomE|NEiwEi=
80 75 79 sylibr GUPGraphVFinEFinNVDisjvVNidomE|NEivEi
81 5 11 80 hashiun GUPGraphVFinEFinNVvVNidomE|NEivEi=vVNidomE|NEivEi
82 81 eqcomd GUPGraphVFinEFinNVvVNidomE|NEivEi=vVNidomE|NEivEi
83 82 oveq1d GUPGraphVFinEFinNVvVNidomE|NEivEi+idomE|Ei=N=vVNidomE|NEivEi+idomE|Ei=N
84 11 ralrimiva GUPGraphVFinEFinNVvVNidomE|NEivEiFin
85 iunfi VNFinvVNidomE|NEivEiFinvVNidomE|NEivEiFin
86 5 84 85 syl2anc GUPGraphVFinEFinNVvVNidomE|NEivEiFin
87 rabfi domEFinidomE|Ei=NFin
88 6 87 syl EFinidomE|Ei=NFin
89 88 adantl VFinEFinidomE|Ei=NFin
90 89 3ad2ant2 GUPGraphVFinEFinNVidomE|Ei=NFin
91 fveqeq2 i=jEi=NEj=N
92 91 elrab jidomE|Ei=NjdomEEj=N
93 eldifn vVN¬vN
94 eleq2 Ej=NvEjvN
95 94 notbid Ej=N¬vEj¬vN
96 93 95 imbitrrid Ej=NvVN¬vEj
97 96 adantl jdomEEj=NvVN¬vEj
98 97 adantl GUPGraphVFinEFinNVjdomEEj=NvVN¬vEj
99 98 imp GUPGraphVFinEFinNVjdomEEj=NvVN¬vEj
100 99 intnand GUPGraphVFinEFinNVjdomEEj=NvVN¬NEjvEj
101 100 intnand GUPGraphVFinEFinNVjdomEEj=NvVN¬jdomENEjvEj
102 101 ralrimiva GUPGraphVFinEFinNVjdomEEj=NvVN¬jdomENEjvEj
103 eliun jvVNidomE|NEivEivVNjidomE|NEivEi
104 103 notbii ¬jvVNidomE|NEivEi¬vVNjidomE|NEivEi
105 ralnex vVN¬jidomE|NEivEi¬vVNjidomE|NEivEi
106 fveq2 i=jEi=Ej
107 106 eleq2d i=jNEiNEj
108 106 eleq2d i=jvEivEj
109 107 108 anbi12d i=jNEivEiNEjvEj
110 109 elrab jidomE|NEivEijdomENEjvEj
111 110 notbii ¬jidomE|NEivEi¬jdomENEjvEj
112 111 ralbii vVN¬jidomE|NEivEivVN¬jdomENEjvEj
113 104 105 112 3bitr2i ¬jvVNidomE|NEivEivVN¬jdomENEjvEj
114 102 113 sylibr GUPGraphVFinEFinNVjdomEEj=N¬jvVNidomE|NEivEi
115 114 ex GUPGraphVFinEFinNVjdomEEj=N¬jvVNidomE|NEivEi
116 92 115 biimtrid GUPGraphVFinEFinNVjidomE|Ei=N¬jvVNidomE|NEivEi
117 116 ralrimiv GUPGraphVFinEFinNVjidomE|Ei=N¬jvVNidomE|NEivEi
118 disjr vVNidomE|NEivEiidomE|Ei=N=jidomE|Ei=N¬jvVNidomE|NEivEi
119 117 118 sylibr GUPGraphVFinEFinNVvVNidomE|NEivEiidomE|Ei=N=
120 hashun vVNidomE|NEivEiFinidomE|Ei=NFinvVNidomE|NEivEiidomE|Ei=N=vVNidomE|NEivEiidomE|Ei=N=vVNidomE|NEivEi+idomE|Ei=N
121 86 90 119 120 syl3anc GUPGraphVFinEFinNVvVNidomE|NEivEiidomE|Ei=N=vVNidomE|NEivEi+idomE|Ei=N
122 1 2 edglnl GUPGraphNVvVNidomE|NEivEiidomE|Ei=N=idomE|NEi
123 122 3adant2 GUPGraphVFinEFinNVvVNidomE|NEivEiidomE|Ei=N=idomE|NEi
124 123 fveq2d GUPGraphVFinEFinNVvVNidomE|NEivEiidomE|Ei=N=idomE|NEi
125 83 121 124 3eqtr2d GUPGraphVFinEFinNVvVNidomE|NEivEi+idomE|Ei=N=idomE|NEi