Metamath Proof Explorer


Theorem ordtconnlem1

Description: Connectedness in the order topology of a toset. This is the "easy" direction of ordtconn . See also reconnlem1 . (Contributed by Thierry Arnoux, 14-Sep-2018)

Ref Expression
Hypotheses ordtconn.x B=BaseK
ordtconn.l ˙=KB×B
ordtconn.j J=ordTop˙
Assertion ordtconnlem1 KTosetABJ𝑡AConnxAyArBx˙rr˙yrA

Proof

Step Hyp Ref Expression
1 ordtconn.x B=BaseK
2 ordtconn.l ˙=KB×B
3 ordtconn.j J=ordTop˙
4 nfv rKTosetAB
5 nfcv _rA
6 nfra2w ryArBx˙rr˙yrA
7 5 6 nfralw rxAyArBx˙rr˙yrA
8 7 nfn r¬xAyArBx˙rr˙yrA
9 4 8 nfan rKTosetAB¬xAyArBx˙rr˙yrA
10 tospos KTosetKPoset
11 posprs KPosetKProset
12 fvex KV
13 12 inex1 KB×BV
14 2 13 eqeltri ˙V
15 eqid dom˙=dom˙
16 15 ordttopon ˙VordTop˙TopOndom˙
17 14 16 ax-mp ordTop˙TopOndom˙
18 1 2 prsdm KProsetdom˙=B
19 18 fveq2d KProsetTopOndom˙=TopOnB
20 17 19 eleqtrid KProsetordTop˙TopOnB
21 3 20 eqeltrid KProsetJTopOnB
22 10 11 21 3syl KTosetJTopOnB
23 22 ad3antrrr KTosetABrB¬rAJTopOnB
24 23 adantlr KTosetABrBxA¬r˙xyA¬y˙r¬rAJTopOnB
25 simpllr KTosetABrB¬rAAB
26 25 adantlr KTosetABrBxA¬r˙xyA¬y˙r¬rAAB
27 simpll KTosetABrBKToset
28 27 10 11 3syl KTosetABrBKProset
29 snex BV
30 1 fvexi BV
31 30 mptex xByB|¬y˙xV
32 31 rnex ranxByB|¬y˙xV
33 30 mptex xByB|¬x˙yV
34 33 rnex ranxByB|¬x˙yV
35 32 34 unex ranxByB|¬y˙xranxByB|¬x˙yV
36 29 35 unex BranxByB|¬y˙xranxByB|¬x˙yV
37 ssfii BranxByB|¬y˙xranxByB|¬x˙yVBranxByB|¬y˙xranxByB|¬x˙yfiBranxByB|¬y˙xranxByB|¬x˙y
38 36 37 ax-mp BranxByB|¬y˙xranxByB|¬x˙yfiBranxByB|¬y˙xranxByB|¬x˙y
39 fvex fiBranxByB|¬y˙xranxByB|¬x˙yV
40 bastg fiBranxByB|¬y˙xranxByB|¬x˙yVfiBranxByB|¬y˙xranxByB|¬x˙ytopGenfiBranxByB|¬y˙xranxByB|¬x˙y
41 39 40 ax-mp fiBranxByB|¬y˙xranxByB|¬x˙ytopGenfiBranxByB|¬y˙xranxByB|¬x˙y
42 38 41 sstri BranxByB|¬y˙xranxByB|¬x˙ytopGenfiBranxByB|¬y˙xranxByB|¬x˙y
43 eqid ranxByB|¬y˙x=ranxByB|¬y˙x
44 eqid ranxByB|¬x˙y=ranxByB|¬x˙y
45 1 2 43 44 ordtprsval KProsetordTop˙=topGenfiBranxByB|¬y˙xranxByB|¬x˙y
46 3 45 eqtrid KProsetJ=topGenfiBranxByB|¬y˙xranxByB|¬x˙y
47 42 46 sseqtrrid KProsetBranxByB|¬y˙xranxByB|¬x˙yJ
48 47 unssbd KProsetranxByB|¬y˙xranxByB|¬x˙yJ
49 28 48 syl KTosetABrBranxByB|¬y˙xranxByB|¬x˙yJ
50 49 unssbd KTosetABrBranxByB|¬x˙yJ
51 breq2 z=yr˙zr˙y
52 51 notbid z=y¬r˙z¬r˙y
53 52 cbvrabv zB|¬r˙z=yB|¬r˙y
54 breq1 x=rx˙yr˙y
55 54 notbid x=r¬x˙y¬r˙y
56 55 rabbidv x=ryB|¬x˙y=yB|¬r˙y
57 56 rspceeqv rBzB|¬r˙z=yB|¬r˙yxBzB|¬r˙z=yB|¬x˙y
58 53 57 mpan2 rBxBzB|¬r˙z=yB|¬x˙y
59 30 rabex zB|¬r˙zV
60 eqid xByB|¬x˙y=xByB|¬x˙y
61 60 elrnmpt zB|¬r˙zVzB|¬r˙zranxByB|¬x˙yxBzB|¬r˙z=yB|¬x˙y
62 59 61 ax-mp zB|¬r˙zranxByB|¬x˙yxBzB|¬r˙z=yB|¬x˙y
63 58 62 sylibr rBzB|¬r˙zranxByB|¬x˙y
64 63 adantl KTosetABrBzB|¬r˙zranxByB|¬x˙y
65 50 64 sseldd KTosetABrBzB|¬r˙zJ
66 65 ad2antrr KTosetABrBxA¬r˙xyA¬y˙r¬rAzB|¬r˙zJ
67 49 unssad KTosetABrBranxByB|¬y˙xJ
68 breq1 z=yz˙ry˙r
69 68 notbid z=y¬z˙r¬y˙r
70 69 cbvrabv zB|¬z˙r=yB|¬y˙r
71 breq2 x=ry˙xy˙r
72 71 notbid x=r¬y˙x¬y˙r
73 72 rabbidv x=ryB|¬y˙x=yB|¬y˙r
74 73 rspceeqv rBzB|¬z˙r=yB|¬y˙rxBzB|¬z˙r=yB|¬y˙x
75 70 74 mpan2 rBxBzB|¬z˙r=yB|¬y˙x
76 30 rabex zB|¬z˙rV
77 eqid xByB|¬y˙x=xByB|¬y˙x
78 77 elrnmpt zB|¬z˙rVzB|¬z˙rranxByB|¬y˙xxBzB|¬z˙r=yB|¬y˙x
79 76 78 ax-mp zB|¬z˙rranxByB|¬y˙xxBzB|¬z˙r=yB|¬y˙x
80 75 79 sylibr rBzB|¬z˙rranxByB|¬y˙x
81 80 adantl KTosetABrBzB|¬z˙rranxByB|¬y˙x
82 67 81 sseldd KTosetABrBzB|¬z˙rJ
83 82 ad2antrr KTosetABrBxA¬r˙xyA¬y˙r¬rAzB|¬z˙rJ
84 simpll KTosetABrBxA¬r˙xyA¬y˙r¬rAKTosetABrB
85 simpr KTosetABrBxA¬r˙xyA¬y˙r¬rA¬rA
86 84 85 jca KTosetABrBxA¬r˙xyA¬y˙r¬rAKTosetABrB¬rA
87 simplrl KTosetABrBxA¬r˙xyA¬y˙r¬rAxA¬r˙x
88 ssel ABxAxB
89 88 ancrd ABxAxBxA
90 89 anim1d ABxA¬r˙xxBxA¬r˙x
91 90 impl ABxA¬r˙xxBxA¬r˙x
92 elin xzB|¬r˙zAxzB|¬r˙zxA
93 breq2 z=xr˙zr˙x
94 93 notbid z=x¬r˙z¬r˙x
95 94 elrab xzB|¬r˙zxB¬r˙x
96 95 anbi1i xzB|¬r˙zxAxB¬r˙xxA
97 an32 xB¬r˙xxAxBxA¬r˙x
98 92 96 97 3bitri xzB|¬r˙zAxBxA¬r˙x
99 91 98 sylibr ABxA¬r˙xxzB|¬r˙zA
100 99 ne0d ABxA¬r˙xzB|¬r˙zA
101 25 100 sylanl1 KTosetABrB¬rAxA¬r˙xzB|¬r˙zA
102 101 r19.29an KTosetABrB¬rAxA¬r˙xzB|¬r˙zA
103 86 87 102 syl2anc KTosetABrBxA¬r˙xyA¬y˙r¬rAzB|¬r˙zA
104 simplrr KTosetABrBxA¬r˙xyA¬y˙r¬rAyA¬y˙r
105 ssel AByAyB
106 105 ancrd AByAyByA
107 106 anim1d AByA¬y˙ryByA¬y˙r
108 107 impl AByA¬y˙ryByA¬y˙r
109 elin yzB|¬z˙rAyzB|¬z˙ryA
110 69 elrab yzB|¬z˙ryB¬y˙r
111 110 anbi1i yzB|¬z˙ryAyB¬y˙ryA
112 an32 yB¬y˙ryAyByA¬y˙r
113 109 111 112 3bitri yzB|¬z˙rAyByA¬y˙r
114 108 113 sylibr AByA¬y˙ryzB|¬z˙rA
115 114 ne0d AByA¬y˙rzB|¬z˙rA
116 25 115 sylanl1 KTosetABrB¬rAyA¬y˙rzB|¬z˙rA
117 116 r19.29an KTosetABrB¬rAyA¬y˙rzB|¬z˙rA
118 86 104 117 syl2anc KTosetABrBxA¬r˙xyA¬y˙r¬rAzB|¬z˙rA
119 1 2 trleile KTosetrBzBr˙zz˙r
120 oran r˙zz˙r¬¬r˙z¬z˙r
121 119 120 sylib KTosetrBzB¬¬r˙z¬z˙r
122 121 3expa KTosetrBzB¬¬r˙z¬z˙r
123 122 nrexdv KTosetrB¬zB¬r˙z¬z˙r
124 rabid zzB|¬r˙zzB¬r˙z
125 rabid zzB|¬z˙rzB¬z˙r
126 124 125 anbi12i zzB|¬r˙zzzB|¬z˙rzB¬r˙zzB¬z˙r
127 elin zzB|¬r˙zzB|¬z˙rzzB|¬r˙zzzB|¬z˙r
128 anandi zB¬r˙z¬z˙rzB¬r˙zzB¬z˙r
129 126 127 128 3bitr4i zzB|¬r˙zzB|¬z˙rzB¬r˙z¬z˙r
130 129 exbii zzzB|¬r˙zzB|¬z˙rzzB¬r˙z¬z˙r
131 nfrab1 _zzB|¬r˙z
132 nfrab1 _zzB|¬z˙r
133 131 132 nfin _zzB|¬r˙zzB|¬z˙r
134 133 n0f zB|¬r˙zzB|¬z˙rzzzB|¬r˙zzB|¬z˙r
135 df-rex zB¬r˙z¬z˙rzzB¬r˙z¬z˙r
136 130 134 135 3bitr4i zB|¬r˙zzB|¬z˙rzB¬r˙z¬z˙r
137 136 necon1bbii ¬zB¬r˙z¬z˙rzB|¬r˙zzB|¬z˙r=
138 123 137 sylib KTosetrBzB|¬r˙zzB|¬z˙r=
139 138 adantlr KTosetABrBzB|¬r˙zzB|¬z˙r=
140 139 adantr KTosetABrB¬rAzB|¬r˙zzB|¬z˙r=
141 140 ineq1d KTosetABrB¬rAzB|¬r˙zzB|¬z˙rA=A
142 0in A=
143 141 142 eqtrdi KTosetABrB¬rAzB|¬r˙zzB|¬z˙rA=
144 143 adantlr KTosetABrBxA¬r˙xyA¬y˙r¬rAzB|¬r˙zzB|¬z˙rA=
145 simplr KTosetABrB¬rArB
146 simpr KTosetABrB¬rA¬rA
147 vex rV
148 147 snss rBrB
149 eldif rBArB¬rA
150 147 snss rBArBA
151 149 150 bitr3i rB¬rArBA
152 ssconb rBABrBAABr
153 151 152 bitrid rBABrB¬rAABr
154 148 153 sylanb rBABrB¬rAABr
155 154 adantl KTosetrBABrB¬rAABr
156 155 anass1rs KTosetABrBrB¬rAABr
157 156 adantr KTosetABrB¬rArB¬rAABr
158 145 146 157 mpbi2and KTosetABrB¬rAABr
159 10 ad3antrrr KTosetABrB¬rAKPoset
160 nfv zKPosetrB
161 131 132 nfun _zzB|¬r˙zzB|¬z˙r
162 nfcv _zBr
163 ianor ¬r˙zz˙r¬r˙z¬z˙r
164 1 2 posrasymb KPosetrBzBr˙zz˙rr=z
165 equcom r=zz=r
166 164 165 bitrdi KPosetrBzBr˙zz˙rz=r
167 166 necon3bbid KPosetrBzB¬r˙zz˙rzr
168 163 167 bitr3id KPosetrBzB¬r˙z¬z˙rzr
169 168 3expia KPosetrBzB¬r˙z¬z˙rzr
170 169 pm5.32d KPosetrBzB¬r˙z¬z˙rzBzr
171 124 125 orbi12i zzB|¬r˙zzzB|¬z˙rzB¬r˙zzB¬z˙r
172 elun zzB|¬r˙zzB|¬z˙rzzB|¬r˙zzzB|¬z˙r
173 andi zB¬r˙z¬z˙rzB¬r˙zzB¬z˙r
174 171 172 173 3bitr4ri zB¬r˙z¬z˙rzzB|¬r˙zzB|¬z˙r
175 eldifsn zBrzBzr
176 175 bicomi zBzrzBr
177 170 174 176 3bitr3g KPosetrBzzB|¬r˙zzB|¬z˙rzBr
178 160 161 162 177 eqrd KPosetrBzB|¬r˙zzB|¬z˙r=Br
179 159 145 178 syl2anc KTosetABrB¬rAzB|¬r˙zzB|¬z˙r=Br
180 158 179 sseqtrrd KTosetABrB¬rAAzB|¬r˙zzB|¬z˙r
181 180 adantlr KTosetABrBxA¬r˙xyA¬y˙r¬rAAzB|¬r˙zzB|¬z˙r
182 24 26 66 83 103 118 144 181 nconnsubb KTosetABrBxA¬r˙xyA¬y˙r¬rA¬J𝑡AConn
183 182 anasss KTosetABrBxA¬r˙xyA¬y˙r¬rA¬J𝑡AConn
184 183 adantllr KTosetAB¬xAyArBx˙rr˙yrArBxA¬r˙xyA¬y˙r¬rA¬J𝑡AConn
185 rexanali rBx˙rr˙y¬rA¬rBx˙rr˙yrA
186 185 rexbii yArBx˙rr˙y¬rAyA¬rBx˙rr˙yrA
187 rexcom yArBx˙rr˙y¬rArByAx˙rr˙y¬rA
188 rexnal yA¬rBx˙rr˙yrA¬yArBx˙rr˙yrA
189 186 187 188 3bitr3i rByAx˙rr˙y¬rA¬yArBx˙rr˙yrA
190 189 rexbii xArByAx˙rr˙y¬rAxA¬yArBx˙rr˙yrA
191 rexcom xArByAx˙rr˙y¬rArBxAyAx˙rr˙y¬rA
192 rexnal xA¬yArBx˙rr˙yrA¬xAyArBx˙rr˙yrA
193 190 191 192 3bitr3i rBxAyAx˙rr˙y¬rA¬xAyArBx˙rr˙yrA
194 r19.41v yAx˙rr˙y¬rAyAx˙rr˙y¬rA
195 194 rexbii xAyAx˙rr˙y¬rAxAyAx˙rr˙y¬rA
196 r19.41v xAyAx˙rr˙y¬rAxAyAx˙rr˙y¬rA
197 reeanv xAyAx˙rr˙yxAx˙ryAr˙y
198 197 anbi1i xAyAx˙rr˙y¬rAxAx˙ryAr˙y¬rA
199 195 196 198 3bitri xAyAx˙rr˙y¬rAxAx˙ryAr˙y¬rA
200 199 rexbii rBxAyAx˙rr˙y¬rArBxAx˙ryAr˙y¬rA
201 193 200 bitr3i ¬xAyArBx˙rr˙yrArBxAx˙ryAr˙y¬rA
202 27 ad2antrr KTosetABrB¬rAxAKToset
203 25 sselda KTosetABrB¬rAxAxB
204 simpllr KTosetABrB¬rAxArB
205 1 2 trleile KTosetxBrBx˙rr˙x
206 202 203 204 205 syl3anc KTosetABrB¬rAxAx˙rr˙x
207 simpr KTosetABrB¬rAxAxA
208 simplr KTosetABrB¬rAxA¬rA
209 nelne2 xA¬rAxr
210 207 208 209 syl2anc KTosetABrB¬rAxAxr
211 159 adantr KTosetABrB¬rAxAKPoset
212 1 2 posrasymb KPosetxBrBx˙rr˙xx=r
213 212 necon3bbid KPosetxBrB¬x˙rr˙xxr
214 211 203 204 213 syl3anc KTosetABrB¬rAxA¬x˙rr˙xxr
215 210 214 mpbird KTosetABrB¬rAxA¬x˙rr˙x
216 206 215 jca KTosetABrB¬rAxAx˙rr˙x¬x˙rr˙x
217 pm5.17 x˙rr˙x¬x˙rr˙xx˙r¬r˙x
218 216 217 sylib KTosetABrB¬rAxAx˙r¬r˙x
219 218 rexbidva KTosetABrB¬rAxAx˙rxA¬r˙x
220 27 ad2antrr KTosetABrB¬rAyAKToset
221 simpllr KTosetABrB¬rAyArB
222 25 sselda KTosetABrB¬rAyAyB
223 1 2 trleile KTosetrByBr˙yy˙r
224 220 221 222 223 syl3anc KTosetABrB¬rAyAr˙yy˙r
225 simpr KTosetABrB¬rAyAyA
226 simplr KTosetABrB¬rAyA¬rA
227 nelne2 yA¬rAyr
228 225 226 227 syl2anc KTosetABrB¬rAyAyr
229 228 necomd KTosetABrB¬rAyAry
230 159 adantr KTosetABrB¬rAyAKPoset
231 1 2 posrasymb KPosetrByBr˙yy˙rr=y
232 231 necon3bbid KPosetrByB¬r˙yy˙rry
233 230 221 222 232 syl3anc KTosetABrB¬rAyA¬r˙yy˙rry
234 229 233 mpbird KTosetABrB¬rAyA¬r˙yy˙r
235 224 234 jca KTosetABrB¬rAyAr˙yy˙r¬r˙yy˙r
236 pm5.17 r˙yy˙r¬r˙yy˙rr˙y¬y˙r
237 235 236 sylib KTosetABrB¬rAyAr˙y¬y˙r
238 237 rexbidva KTosetABrB¬rAyAr˙yyA¬y˙r
239 219 238 anbi12d KTosetABrB¬rAxAx˙ryAr˙yxA¬r˙xyA¬y˙r
240 239 ex KTosetABrB¬rAxAx˙ryAr˙yxA¬r˙xyA¬y˙r
241 240 pm5.32rd KTosetABrBxAx˙ryAr˙y¬rAxA¬r˙xyA¬y˙r¬rA
242 241 rexbidva KTosetABrBxAx˙ryAr˙y¬rArBxA¬r˙xyA¬y˙r¬rA
243 201 242 bitrid KTosetAB¬xAyArBx˙rr˙yrArBxA¬r˙xyA¬y˙r¬rA
244 243 biimpa KTosetAB¬xAyArBx˙rr˙yrArBxA¬r˙xyA¬y˙r¬rA
245 9 184 244 r19.29af KTosetAB¬xAyArBx˙rr˙yrA¬J𝑡AConn
246 245 ex KTosetAB¬xAyArBx˙rr˙yrA¬J𝑡AConn
247 246 con4d KTosetABJ𝑡AConnxAyArBx˙rr˙yrA