Metamath Proof Explorer


Theorem ovnhoi

Description: The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). Proposition 115D (b) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses ovnhoi.x φXFin
ovnhoi.a φA:X
ovnhoi.b φB:X
ovnhoi.c I=kXAkBk
ovnhoi.l L=xFinax,bxifx=0kxvolakbk
Assertion ovnhoi φvoln*XI=ALXB

Proof

Step Hyp Ref Expression
1 ovnhoi.x φXFin
2 ovnhoi.a φA:X
3 ovnhoi.b φB:X
4 ovnhoi.c I=kXAkBk
5 ovnhoi.l L=xFinax,bxifx=0kxvolakbk
6 4 a1i φI=kXAkBk
7 nfv kφ
8 2 ffvelcdmda φkXAk
9 3 ffvelcdmda φkXBk
10 9 rexrd φkXBk*
11 7 8 10 hoissrrn2 φkXAkBkX
12 6 11 eqsstrd φIX
13 1 12 ovnxrcl φvoln*XI*
14 icossxr 0+∞*
15 5 1 2 3 hoidmvcl φALXB0+∞
16 14 15 sselid φALXB*
17 fveq2 X=voln*X=voln*
18 17 fveq1d X=voln*XI=voln*I
19 18 adantl φX=voln*XI=voln*I
20 ixpeq1 X=kXAkBk=kAkBk
21 ixp0x kAkBk=
22 21 a1i X=kAkBk=
23 20 22 eqtrd X=kXAkBk=
24 23 adantl φX=kXAkBk=
25 4 a1i φX=I=kXAkBk
26 reex V
27 mapdm0 V=
28 26 27 ax-mp =
29 28 a1i φX==
30 24 25 29 3eqtr4d φX=I=
31 eqimss I=I
32 30 31 syl φX=I
33 32 ovn0val φX=voln*I=0
34 19 33 eqtrd φX=voln*XI=0
35 0red φX=0
36 34 35 eqeltrd φX=voln*XI
37 eqidd φX=0=0
38 fveq2 X=LX=L
39 38 oveqd X=ALXB=ALB
40 39 adantl φX=ALXB=ALB
41 2 adantr φX=A:X
42 simpr φX=X=
43 42 feq2d φX=A:XA:
44 41 43 mpbid φX=A:
45 3 adantr φX=B:X
46 42 feq2d φX=B:XB:
47 45 46 mpbid φX=B:
48 5 44 47 hoidmv0val φX=ALB=0
49 40 48 eqtrd φX=ALXB=0
50 37 34 49 3eqtr4d φX=voln*XI=ALXB
51 36 50 eqled φX=voln*XIALXB
52 eqid z*|i2XIjkX.ijkz=sum^jkXvol.ijk=z*|i2XIjkX.ijkz=sum^jkXvol.ijk
53 eqeq1 n=jn=1j=1
54 53 ifbid n=jifn=1AkBk00=ifj=1AkBk00
55 54 mpteq2dv n=jkXifn=1AkBk00=kXifj=1AkBk00
56 55 cbvmptv nkXifn=1AkBk00=jkXifj=1AkBk00
57 1 2 3 4 52 56 ovnhoilem1 φvoln*XIkXvolAkBk
58 57 adantr φ¬X=voln*XIkXvolAkBk
59 1 adantr φ¬X=XFin
60 neqne ¬X=X
61 60 adantl φ¬X=X
62 2 adantr φ¬X=A:X
63 3 adantr φ¬X=B:X
64 5 59 61 62 63 hoidmvn0val φ¬X=ALXB=kXvolAkBk
65 64 eqcomd φ¬X=kXvolAkBk=ALXB
66 58 65 breqtrd φ¬X=voln*XIALXB
67 51 66 pm2.61dan φvoln*XIALXB
68 49 35 eqeltrd φX=ALXB
69 50 eqcomd φX=ALXB=voln*XI
70 68 69 eqled φX=ALXBvoln*XI
71 fveq1 a=cak=ck
72 71 fvoveq1d a=cvolakbk=volckbk
73 72 prodeq2ad a=ckxvolakbk=kxvolckbk
74 73 ifeq2d a=cifx=0kxvolakbk=ifx=0kxvolckbk
75 fveq1 b=dbk=dk
76 75 oveq2d b=dckbk=ckdk
77 76 fveq2d b=dvolckbk=volckdk
78 77 prodeq2ad b=dkxvolckbk=kxvolckdk
79 78 ifeq2d b=difx=0kxvolckbk=ifx=0kxvolckdk
80 74 79 cbvmpov ax,bxifx=0kxvolakbk=cx,dxifx=0kxvolckdk
81 80 a1i x=yax,bxifx=0kxvolakbk=cx,dxifx=0kxvolckdk
82 oveq2 x=yx=y
83 eqeq1 x=yx=y=
84 prodeq1 x=ykxvolckdk=kyvolckdk
85 83 84 ifbieq2d x=yifx=0kxvolckdk=ify=0kyvolckdk
86 82 82 85 mpoeq123dv x=ycx,dxifx=0kxvolckdk=cy,dyify=0kyvolckdk
87 81 86 eqtrd x=yax,bxifx=0kxvolakbk=cy,dyify=0kyvolckdk
88 87 cbvmptv xFinax,bxifx=0kxvolakbk=yFincy,dyify=0kyvolckdk
89 5 88 eqtri L=yFincy,dyify=0kyvolckdk
90 eqeq1 w=zw=sum^jkXvol.hjkz=sum^jkXvol.hjk
91 90 anbi2d w=zIjkX.hjkw=sum^jkXvol.hjkIjkX.hjkz=sum^jkXvol.hjk
92 91 rexbidv w=zh2XIjkX.hjkw=sum^jkXvol.hjkh2XIjkX.hjkz=sum^jkXvol.hjk
93 simpl h=ijh=i
94 93 fveq1d h=ijhj=ij
95 94 coeq2d h=ij.hj=.ij
96 95 fveq1d h=ij.hjk=.ijk
97 96 ixpeq2dv h=ijkX.hjk=kX.ijk
98 97 iuneq2dv h=ijkX.hjk=jkX.ijk
99 98 sseq2d h=iIjkX.hjkIjkX.ijk
100 simpl h=ikXh=i
101 100 fveq1d h=ikXhj=ij
102 101 coeq2d h=ikX.hj=.ij
103 102 fveq1d h=ikX.hjk=.ijk
104 103 fveq2d h=ikXvol.hjk=vol.ijk
105 104 prodeq2dv h=ikXvol.hjk=kXvol.ijk
106 105 mpteq2dv h=ijkXvol.hjk=jkXvol.ijk
107 106 fveq2d h=isum^jkXvol.hjk=sum^jkXvol.ijk
108 107 eqeq2d h=iz=sum^jkXvol.hjkz=sum^jkXvol.ijk
109 99 108 anbi12d h=iIjkX.hjkz=sum^jkXvol.hjkIjkX.ijkz=sum^jkXvol.ijk
110 109 cbvrexvw h2XIjkX.hjkz=sum^jkXvol.hjki2XIjkX.ijkz=sum^jkXvol.ijk
111 110 a1i w=zh2XIjkX.hjkz=sum^jkXvol.hjki2XIjkX.ijkz=sum^jkXvol.ijk
112 92 111 bitrd w=zh2XIjkX.hjkw=sum^jkXvol.hjki2XIjkX.ijkz=sum^jkXvol.ijk
113 112 cbvrabv w*|h2XIjkX.hjkw=sum^jkXvol.hjk=z*|i2XIjkX.ijkz=sum^jkXvol.ijk
114 simpl j=nlXj=n
115 114 fveq2d j=nlXij=in
116 115 fveq1d j=nlXijl=inl
117 116 fveq2d j=nlX1stijl=1stinl
118 117 mpteq2dva j=nlX1stijl=lX1stinl
119 118 cbvmptv jlX1stijl=nlX1stinl
120 119 mpteq2i i2XjlX1stijl=i2XnlX1stinl
121 116 fveq2d j=nlX2ndijl=2ndinl
122 121 mpteq2dva j=nlX2ndijl=lX2ndinl
123 122 cbvmptv jlX2ndijl=nlX2ndinl
124 123 mpteq2i i2XjlX2ndijl=i2XnlX2ndinl
125 59 61 62 63 4 89 113 120 124 ovnhoilem2 φ¬X=ALXBvoln*XI
126 70 125 pm2.61dan φALXBvoln*XI
127 13 16 67 126 xrletrid φvoln*XI=ALXB