Metamath Proof Explorer


Theorem pjhthlem1

Description: Lemma for pjhth . (Contributed by NM, 10-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (Proof shortened by AV, 10-Jul-2022) (New usage is discouraged.)

Ref Expression
Hypotheses pjhth.1 H C
pjhth.2 φ A
pjhth.3 φ B H
pjhth.4 φ C H
pjhth.5 φ x H norm A - B norm A - x
pjhth.6 T = A - B ih C C ih C + 1
Assertion pjhthlem1 φ A - B ih C = 0

Proof

Step Hyp Ref Expression
1 pjhth.1 H C
2 pjhth.2 φ A
3 pjhth.3 φ B H
4 pjhth.4 φ C H
5 pjhth.5 φ x H norm A - B norm A - x
6 pjhth.6 T = A - B ih C C ih C + 1
7 1 cheli B H B
8 3 7 syl φ B
9 hvsubcl A B A - B
10 2 8 9 syl2anc φ A - B
11 1 cheli C H C
12 4 11 syl φ C
13 hicl A - B C A - B ih C
14 10 12 13 syl2anc φ A - B ih C
15 14 abscld φ A - B ih C
16 15 recnd φ A - B ih C
17 15 resqcld φ A - B ih C 2
18 17 renegcld φ A - B ih C 2
19 hiidrcl C C ih C
20 12 19 syl φ C ih C
21 2re 2
22 readdcl C ih C 2 C ih C + 2
23 20 21 22 sylancl φ C ih C + 2
24 0red φ 0
25 peano2re C ih C C ih C + 1
26 20 25 syl φ C ih C + 1
27 hiidge0 C 0 C ih C
28 12 27 syl φ 0 C ih C
29 20 ltp1d φ C ih C < C ih C + 1
30 24 20 26 28 29 lelttrd φ 0 < C ih C + 1
31 26 ltp1d φ C ih C + 1 < C ih C + 1 + 1
32 df-2 2 = 1 + 1
33 32 oveq2i C ih C + 2 = C ih C + 1 + 1
34 20 recnd φ C ih C
35 ax-1cn 1
36 addass C ih C 1 1 C ih C + 1 + 1 = C ih C + 1 + 1
37 35 35 36 mp3an23 C ih C C ih C + 1 + 1 = C ih C + 1 + 1
38 34 37 syl φ C ih C + 1 + 1 = C ih C + 1 + 1
39 33 38 eqtr4id φ C ih C + 2 = C ih C + 1 + 1
40 31 39 breqtrrd φ C ih C + 1 < C ih C + 2
41 24 26 23 30 40 lttrd φ 0 < C ih C + 2
42 23 41 elrpd φ C ih C + 2 +
43 oveq2 x = B + T C A - x = A - B + T C
44 43 fveq2d x = B + T C norm A - x = norm A - B + T C
45 44 breq2d x = B + T C norm A - B norm A - x norm A - B norm A - B + T C
46 1 chshii H S
47 46 a1i φ H S
48 26 recnd φ C ih C + 1
49 20 28 ge0p1rpd φ C ih C + 1 +
50 49 rpne0d φ C ih C + 1 0
51 14 48 50 divcld φ A - B ih C C ih C + 1
52 6 51 eqeltrid φ T
53 shmulcl H S T C H T C H
54 47 52 4 53 syl3anc φ T C H
55 shaddcl H S B H T C H B + T C H
56 47 3 54 55 syl3anc φ B + T C H
57 45 5 56 rspcdva φ norm A - B norm A - B + T C
58 1 cheli T C H T C
59 54 58 syl φ T C
60 hvsubass A B T C A - B - T C = A - B + T C
61 2 8 59 60 syl3anc φ A - B - T C = A - B + T C
62 61 fveq2d φ norm A - B - T C = norm A - B + T C
63 57 62 breqtrrd φ norm A - B norm A - B - T C
64 normcl A - B norm A - B
65 10 64 syl φ norm A - B
66 hvsubcl A - B T C A - B - T C
67 10 59 66 syl2anc φ A - B - T C
68 normcl A - B - T C norm A - B - T C
69 67 68 syl φ norm A - B - T C
70 normge0 A - B 0 norm A - B
71 10 70 syl φ 0 norm A - B
72 24 65 69 71 63 letrd φ 0 norm A - B - T C
73 65 69 71 72 le2sqd φ norm A - B norm A - B - T C norm A - B 2 norm A - B - T C 2
74 63 73 mpbid φ norm A - B 2 norm A - B - T C 2
75 69 resqcld φ norm A - B - T C 2
76 65 resqcld φ norm A - B 2
77 75 76 subge0d φ 0 norm A - B - T C 2 norm A - B 2 norm A - B 2 norm A - B - T C 2
78 74 77 mpbird φ 0 norm A - B - T C 2 norm A - B 2
79 2z 2
80 rpexpcl C ih C + 1 + 2 C ih C + 1 2 +
81 49 79 80 sylancl φ C ih C + 1 2 +
82 17 81 rerpdivcld φ A - B ih C 2 C ih C + 1 2
83 82 23 remulcld φ A - B ih C 2 C ih C + 1 2 C ih C + 2
84 83 recnd φ A - B ih C 2 C ih C + 1 2 C ih C + 2
85 84 negcld φ A - B ih C 2 C ih C + 1 2 C ih C + 2
86 hicl A - B A - B A - B ih A - B
87 10 10 86 syl2anc φ A - B ih A - B
88 85 87 pncand φ A - B ih C 2 C ih C + 1 2 C ih C + 2 + A - B ih A - B - A - B ih A - B = A - B ih C 2 C ih C + 1 2 C ih C + 2
89 normsq A - B - T C norm A - B - T C 2 = A - B - T C ih A - B - T C
90 67 89 syl φ norm A - B - T C 2 = A - B - T C ih A - B - T C
91 his2sub A - B T C A - B - T C A - B - T C ih A - B - T C = A - B ih A - B - T C T C ih A - B - T C
92 10 59 67 91 syl3anc φ A - B - T C ih A - B - T C = A - B ih A - B - T C T C ih A - B - T C
93 his2sub2 A - B A - B T C A - B ih A - B - T C = A - B ih A - B A - B ih T C
94 10 10 59 93 syl3anc φ A - B ih A - B - T C = A - B ih A - B A - B ih T C
95 94 oveq1d φ A - B ih A - B - T C T C ih A - B - T C = A - B ih A - B - A - B ih T C - T C ih A - B - T C
96 hicl A - B T C A - B ih T C
97 10 59 96 syl2anc φ A - B ih T C
98 his2sub2 T C A - B T C T C ih A - B - T C = T C ih A - B T C ih T C
99 59 10 59 98 syl3anc φ T C ih A - B - T C = T C ih A - B T C ih T C
100 hicl T C A - B T C ih A - B
101 59 10 100 syl2anc φ T C ih A - B
102 hicl T C T C T C ih T C
103 59 59 102 syl2anc φ T C ih T C
104 101 103 subcld φ T C ih A - B T C ih T C
105 99 104 eqeltrd φ T C ih A - B - T C
106 87 97 105 subsub4d φ A - B ih A - B - A - B ih T C - T C ih A - B - T C = A - B ih A - B A - B ih T C + T C ih A - B - T C
107 82 recnd φ A - B ih C 2 C ih C + 1 2
108 35 a1i φ 1
109 107 48 108 adddid φ A - B ih C 2 C ih C + 1 2 C ih C + 1 + 1 = A - B ih C 2 C ih C + 1 2 C ih C + 1 + A - B ih C 2 C ih C + 1 2 1
110 39 oveq2d φ A - B ih C 2 C ih C + 1 2 C ih C + 2 = A - B ih C 2 C ih C + 1 2 C ih C + 1 + 1
111 his5 T A - B C A - B ih T C = T A - B ih C
112 52 10 12 111 syl3anc φ A - B ih T C = T A - B ih C
113 52 cjcld φ T
114 113 14 mulcomd φ T A - B ih C = A - B ih C T
115 14 cjcld φ A - B ih C
116 14 115 48 50 divassd φ A - B ih C A - B ih C C ih C + 1 = A - B ih C A - B ih C C ih C + 1
117 14 absvalsqd φ A - B ih C 2 = A - B ih C A - B ih C
118 117 oveq1d φ A - B ih C 2 C ih C + 1 = A - B ih C A - B ih C C ih C + 1
119 6 fveq2i T = A - B ih C C ih C + 1
120 14 48 50 cjdivd φ A - B ih C C ih C + 1 = A - B ih C C ih C + 1
121 26 cjred φ C ih C + 1 = C ih C + 1
122 121 oveq2d φ A - B ih C C ih C + 1 = A - B ih C C ih C + 1
123 120 122 eqtrd φ A - B ih C C ih C + 1 = A - B ih C C ih C + 1
124 119 123 eqtrid φ T = A - B ih C C ih C + 1
125 124 oveq2d φ A - B ih C T = A - B ih C A - B ih C C ih C + 1
126 116 118 125 3eqtr4rd φ A - B ih C T = A - B ih C 2 C ih C + 1
127 112 114 126 3eqtrd φ A - B ih T C = A - B ih C 2 C ih C + 1
128 17 recnd φ A - B ih C 2
129 128 48 mulcomd φ A - B ih C 2 C ih C + 1 = C ih C + 1 A - B ih C 2
130 48 sqvald φ C ih C + 1 2 = C ih C + 1 C ih C + 1
131 129 130 oveq12d φ A - B ih C 2 C ih C + 1 C ih C + 1 2 = C ih C + 1 A - B ih C 2 C ih C + 1 C ih C + 1
132 128 48 48 50 50 divcan5d φ C ih C + 1 A - B ih C 2 C ih C + 1 C ih C + 1 = A - B ih C 2 C ih C + 1
133 131 132 eqtr2d φ A - B ih C 2 C ih C + 1 = A - B ih C 2 C ih C + 1 C ih C + 1 2
134 26 resqcld φ C ih C + 1 2
135 134 recnd φ C ih C + 1 2
136 81 rpne0d φ C ih C + 1 2 0
137 128 48 135 136 div23d φ A - B ih C 2 C ih C + 1 C ih C + 1 2 = A - B ih C 2 C ih C + 1 2 C ih C + 1
138 127 133 137 3eqtrd φ A - B ih T C = A - B ih C 2 C ih C + 1 2 C ih C + 1
139 82 26 remulcld φ A - B ih C 2 C ih C + 1 2 C ih C + 1
140 138 139 eqeltrd φ A - B ih T C
141 hire A - B T C A - B ih T C A - B ih T C = T C ih A - B
142 10 59 141 syl2anc φ A - B ih T C A - B ih T C = T C ih A - B
143 140 142 mpbid φ A - B ih T C = T C ih A - B
144 143 138 eqtr3d φ T C ih A - B = A - B ih C 2 C ih C + 1 2 C ih C + 1
145 his35 T T C C T C ih T C = T T C ih C
146 52 52 12 12 145 syl22anc φ T C ih T C = T T C ih C
147 6 fveq2i T = A - B ih C C ih C + 1
148 14 48 50 absdivd φ A - B ih C C ih C + 1 = A - B ih C C ih C + 1
149 49 rpge0d φ 0 C ih C + 1
150 26 149 absidd φ C ih C + 1 = C ih C + 1
151 150 oveq2d φ A - B ih C C ih C + 1 = A - B ih C C ih C + 1
152 148 151 eqtrd φ A - B ih C C ih C + 1 = A - B ih C C ih C + 1
153 147 152 eqtrid φ T = A - B ih C C ih C + 1
154 153 oveq1d φ T 2 = A - B ih C C ih C + 1 2
155 52 absvalsqd φ T 2 = T T
156 16 48 50 sqdivd φ A - B ih C C ih C + 1 2 = A - B ih C 2 C ih C + 1 2
157 154 155 156 3eqtr3d φ T T = A - B ih C 2 C ih C + 1 2
158 157 oveq1d φ T T C ih C = A - B ih C 2 C ih C + 1 2 C ih C
159 146 158 eqtrd φ T C ih T C = A - B ih C 2 C ih C + 1 2 C ih C
160 144 159 oveq12d φ T C ih A - B T C ih T C = A - B ih C 2 C ih C + 1 2 C ih C + 1 A - B ih C 2 C ih C + 1 2 C ih C
161 pncan2 C ih C 1 C ih C + 1 - C ih C = 1
162 34 35 161 sylancl φ C ih C + 1 - C ih C = 1
163 162 oveq2d φ A - B ih C 2 C ih C + 1 2 C ih C + 1 - C ih C = A - B ih C 2 C ih C + 1 2 1
164 107 48 34 subdid φ A - B ih C 2 C ih C + 1 2 C ih C + 1 - C ih C = A - B ih C 2 C ih C + 1 2 C ih C + 1 A - B ih C 2 C ih C + 1 2 C ih C
165 163 164 eqtr3d φ A - B ih C 2 C ih C + 1 2 1 = A - B ih C 2 C ih C + 1 2 C ih C + 1 A - B ih C 2 C ih C + 1 2 C ih C
166 160 99 165 3eqtr4d φ T C ih A - B - T C = A - B ih C 2 C ih C + 1 2 1
167 138 166 oveq12d φ A - B ih T C + T C ih A - B - T C = A - B ih C 2 C ih C + 1 2 C ih C + 1 + A - B ih C 2 C ih C + 1 2 1
168 109 110 167 3eqtr4rd φ A - B ih T C + T C ih A - B - T C = A - B ih C 2 C ih C + 1 2 C ih C + 2
169 168 oveq2d φ A - B ih A - B A - B ih T C + T C ih A - B - T C = A - B ih A - B A - B ih C 2 C ih C + 1 2 C ih C + 2
170 95 106 169 3eqtrd φ A - B ih A - B - T C T C ih A - B - T C = A - B ih A - B A - B ih C 2 C ih C + 1 2 C ih C + 2
171 90 92 170 3eqtrd φ norm A - B - T C 2 = A - B ih A - B A - B ih C 2 C ih C + 1 2 C ih C + 2
172 87 84 negsubd φ A - B ih A - B + A - B ih C 2 C ih C + 1 2 C ih C + 2 = A - B ih A - B A - B ih C 2 C ih C + 1 2 C ih C + 2
173 87 85 addcomd φ A - B ih A - B + A - B ih C 2 C ih C + 1 2 C ih C + 2 = - A - B ih C 2 C ih C + 1 2 C ih C + 2 + A - B ih A - B
174 171 172 173 3eqtr2d φ norm A - B - T C 2 = - A - B ih C 2 C ih C + 1 2 C ih C + 2 + A - B ih A - B
175 normsq A - B norm A - B 2 = A - B ih A - B
176 10 175 syl φ norm A - B 2 = A - B ih A - B
177 174 176 oveq12d φ norm A - B - T C 2 norm A - B 2 = A - B ih C 2 C ih C + 1 2 C ih C + 2 + A - B ih A - B - A - B ih A - B
178 23 renegcld φ C ih C + 2
179 178 recnd φ C ih C + 2
180 128 179 135 136 div23d φ A - B ih C 2 C ih C + 2 C ih C + 1 2 = A - B ih C 2 C ih C + 1 2 C ih C + 2
181 23 recnd φ C ih C + 2
182 107 181 mulneg2d φ A - B ih C 2 C ih C + 1 2 C ih C + 2 = A - B ih C 2 C ih C + 1 2 C ih C + 2
183 180 182 eqtrd φ A - B ih C 2 C ih C + 2 C ih C + 1 2 = A - B ih C 2 C ih C + 1 2 C ih C + 2
184 88 177 183 3eqtr4rd φ A - B ih C 2 C ih C + 2 C ih C + 1 2 = norm A - B - T C 2 norm A - B 2
185 78 184 breqtrrd φ 0 A - B ih C 2 C ih C + 2 C ih C + 1 2
186 17 178 remulcld φ A - B ih C 2 C ih C + 2
187 186 81 ge0divd φ 0 A - B ih C 2 C ih C + 2 0 A - B ih C 2 C ih C + 2 C ih C + 1 2
188 185 187 mpbird φ 0 A - B ih C 2 C ih C + 2
189 mulneg12 A - B ih C 2 C ih C + 2 A - B ih C 2 C ih C + 2 = A - B ih C 2 C ih C + 2
190 128 181 189 syl2anc φ A - B ih C 2 C ih C + 2 = A - B ih C 2 C ih C + 2
191 188 190 breqtrrd φ 0 A - B ih C 2 C ih C + 2
192 18 42 191 prodge0ld φ 0 A - B ih C 2
193 17 le0neg1d φ A - B ih C 2 0 0 A - B ih C 2
194 192 193 mpbird φ A - B ih C 2 0
195 15 sqge0d φ 0 A - B ih C 2
196 0re 0
197 letri3 A - B ih C 2 0 A - B ih C 2 = 0 A - B ih C 2 0 0 A - B ih C 2
198 17 196 197 sylancl φ A - B ih C 2 = 0 A - B ih C 2 0 0 A - B ih C 2
199 194 195 198 mpbir2and φ A - B ih C 2 = 0
200 16 199 sqeq0d φ A - B ih C = 0
201 14 200 abs00d φ A - B ih C = 0