Metamath Proof Explorer


Theorem ply1coe

Description: Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 7-Oct-2019)

Ref Expression
Hypotheses ply1coe.p P=Poly1R
ply1coe.x X=var1R
ply1coe.b B=BaseP
ply1coe.n ·˙=P
ply1coe.m M=mulGrpP
ply1coe.e ×˙=M
ply1coe.a A=coe1K
Assertion ply1coe RRingKBK=Pk0Ak·˙k×˙X

Proof

Step Hyp Ref Expression
1 ply1coe.p P=Poly1R
2 ply1coe.x X=var1R
3 ply1coe.b B=BaseP
4 ply1coe.n ·˙=P
5 ply1coe.m M=mulGrpP
6 ply1coe.e ×˙=M
7 ply1coe.a A=coe1K
8 eqid 1𝑜mPolyR=1𝑜mPolyR
9 psr1baslem 01𝑜=d01𝑜|d-1Fin
10 eqid 0R=0R
11 eqid 1R=1R
12 1onn 1𝑜ω
13 12 a1i RRingKB1𝑜ω
14 eqid PwSer1R=PwSer1R
15 1 14 3 ply1bas B=Base1𝑜mPolyR
16 1 8 4 ply1vsca ·˙=1𝑜mPolyR
17 simpl RRingKBRRing
18 simpr RRingKBKB
19 8 9 10 11 13 15 16 17 18 mplcoe1 RRingKBK=1𝑜mPolyRa01𝑜Ka·˙b01𝑜ifb=a1R0R
20 7 fvcoe1 KBa01𝑜Ka=Aa
21 20 adantll RRingKBa01𝑜Ka=Aa
22 12 a1i RRingKBa01𝑜1𝑜ω
23 eqid mulGrp1𝑜mPolyR=mulGrp1𝑜mPolyR
24 eqid mulGrp1𝑜mPolyR=mulGrp1𝑜mPolyR
25 eqid 1𝑜mVarR=1𝑜mVarR
26 simpll RRingKBa01𝑜RRing
27 simpr RRingKBa01𝑜a01𝑜
28 eqidd RRingKBa01𝑜1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarR=1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarR
29 0ex V
30 fveq2 b=1𝑜mVarRb=1𝑜mVarR
31 30 oveq1d b=1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarR=1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarR
32 30 oveq2d b=1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarRb=1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarR
33 31 32 eqeq12d b=1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarR=1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarRb1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarR=1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarR
34 29 33 ralsn b1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarR=1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarRb1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarR=1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarR
35 28 34 sylibr RRingKBa01𝑜b1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarR=1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarRb
36 fveq2 x=1𝑜mVarRx=1𝑜mVarR
37 36 oveq2d x=1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarRx=1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarR
38 36 oveq1d x=1𝑜mVarRx+mulGrp1𝑜mPolyR1𝑜mVarRb=1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarRb
39 37 38 eqeq12d x=1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarRx=1𝑜mVarRx+mulGrp1𝑜mPolyR1𝑜mVarRb1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarR=1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarRb
40 39 ralbidv x=b1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarRx=1𝑜mVarRx+mulGrp1𝑜mPolyR1𝑜mVarRbb1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarR=1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarRb
41 29 40 ralsn xb1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarRx=1𝑜mVarRx+mulGrp1𝑜mPolyR1𝑜mVarRbb1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarR=1𝑜mVarR+mulGrp1𝑜mPolyR1𝑜mVarRb
42 35 41 sylibr RRingKBa01𝑜xb1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarRx=1𝑜mVarRx+mulGrp1𝑜mPolyR1𝑜mVarRb
43 df1o2 1𝑜=
44 43 raleqi b1𝑜1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarRx=1𝑜mVarRx+mulGrp1𝑜mPolyR1𝑜mVarRbb1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarRx=1𝑜mVarRx+mulGrp1𝑜mPolyR1𝑜mVarRb
45 43 44 raleqbii x1𝑜b1𝑜1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarRx=1𝑜mVarRx+mulGrp1𝑜mPolyR1𝑜mVarRbxb1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarRx=1𝑜mVarRx+mulGrp1𝑜mPolyR1𝑜mVarRb
46 42 45 sylibr RRingKBa01𝑜x1𝑜b1𝑜1𝑜mVarRb+mulGrp1𝑜mPolyR1𝑜mVarRx=1𝑜mVarRx+mulGrp1𝑜mPolyR1𝑜mVarRb
47 8 9 10 11 22 23 24 25 26 27 46 mplcoe5 RRingKBa01𝑜b01𝑜ifb=a1R0R=mulGrp1𝑜mPolyRc1𝑜acmulGrp1𝑜mPolyR1𝑜mVarRc
48 43 mpteq1i c1𝑜acmulGrp1𝑜mPolyR1𝑜mVarRc=cacmulGrp1𝑜mPolyR1𝑜mVarRc
49 48 oveq2i mulGrp1𝑜mPolyRc1𝑜acmulGrp1𝑜mPolyR1𝑜mVarRc=mulGrp1𝑜mPolyRcacmulGrp1𝑜mPolyR1𝑜mVarRc
50 8 mplring 1𝑜ωRRing1𝑜mPolyRRing
51 12 50 mpan RRing1𝑜mPolyRRing
52 23 ringmgp 1𝑜mPolyRRingmulGrp1𝑜mPolyRMnd
53 51 52 syl RRingmulGrp1𝑜mPolyRMnd
54 53 ad2antrr RRingKBa01𝑜mulGrp1𝑜mPolyRMnd
55 29 a1i RRingKBa01𝑜V
56 23 15 mgpbas B=BasemulGrp1𝑜mPolyR
57 56 a1i RRingKBB=BasemulGrp1𝑜mPolyR
58 5 3 mgpbas B=BaseM
59 58 a1i RRingKBB=BaseM
60 ssv BV
61 60 a1i RRingKBBV
62 ovexd RRingKBaVbVa+mulGrp1𝑜mPolyRbV
63 eqid P=P
64 1 8 63 ply1mulr P=1𝑜mPolyR
65 23 64 mgpplusg P=+mulGrp1𝑜mPolyR
66 5 63 mgpplusg P=+M
67 65 66 eqtr3i +mulGrp1𝑜mPolyR=+M
68 67 oveqi a+mulGrp1𝑜mPolyRb=a+Mb
69 68 a1i RRingKBaVbVa+mulGrp1𝑜mPolyRb=a+Mb
70 24 6 57 59 61 62 69 mulgpropd RRingKBmulGrp1𝑜mPolyR=×˙
71 70 oveqd RRingKBamulGrp1𝑜mPolyRX=a×˙X
72 71 adantr RRingKBa01𝑜amulGrp1𝑜mPolyRX=a×˙X
73 1 ply1ring RRingPRing
74 5 ringmgp PRingMMnd
75 73 74 syl RRingMMnd
76 75 ad2antrr RRingKBa01𝑜MMnd
77 elmapi a01𝑜a:1𝑜0
78 0lt1o 1𝑜
79 ffvelcdm a:1𝑜01𝑜a0
80 77 78 79 sylancl a01𝑜a0
81 80 adantl RRingKBa01𝑜a0
82 2 1 3 vr1cl RRingXB
83 82 ad2antrr RRingKBa01𝑜XB
84 58 6 76 81 83 mulgnn0cld RRingKBa01𝑜a×˙XB
85 72 84 eqeltrd RRingKBa01𝑜amulGrp1𝑜mPolyRXB
86 fveq2 c=ac=a
87 fveq2 c=1𝑜mVarRc=1𝑜mVarR
88 2 vr1val X=1𝑜mVarR
89 87 88 eqtr4di c=1𝑜mVarRc=X
90 86 89 oveq12d c=acmulGrp1𝑜mPolyR1𝑜mVarRc=amulGrp1𝑜mPolyRX
91 56 90 gsumsn mulGrp1𝑜mPolyRMndVamulGrp1𝑜mPolyRXBmulGrp1𝑜mPolyRcacmulGrp1𝑜mPolyR1𝑜mVarRc=amulGrp1𝑜mPolyRX
92 54 55 85 91 syl3anc RRingKBa01𝑜mulGrp1𝑜mPolyRcacmulGrp1𝑜mPolyR1𝑜mVarRc=amulGrp1𝑜mPolyRX
93 49 92 eqtrid RRingKBa01𝑜mulGrp1𝑜mPolyRc1𝑜acmulGrp1𝑜mPolyR1𝑜mVarRc=amulGrp1𝑜mPolyRX
94 47 93 72 3eqtrd RRingKBa01𝑜b01𝑜ifb=a1R0R=a×˙X
95 21 94 oveq12d RRingKBa01𝑜Ka·˙b01𝑜ifb=a1R0R=Aa·˙a×˙X
96 95 mpteq2dva RRingKBa01𝑜Ka·˙b01𝑜ifb=a1R0R=a01𝑜Aa·˙a×˙X
97 96 oveq2d RRingKB1𝑜mPolyRa01𝑜Ka·˙b01𝑜ifb=a1R0R=1𝑜mPolyRa01𝑜Aa·˙a×˙X
98 nn0ex 0V
99 98 mptex k0Ak·˙k×˙XV
100 99 a1i RRingKBk0Ak·˙k×˙XV
101 1 fvexi PV
102 101 a1i RRingKBPV
103 ovexd RRingKB1𝑜mPolyRV
104 3 15 eqtr3i BaseP=Base1𝑜mPolyR
105 104 a1i RRingKBBaseP=Base1𝑜mPolyR
106 eqid +P=+P
107 1 8 106 ply1plusg +P=+1𝑜mPolyR
108 107 a1i RRingKB+P=+1𝑜mPolyR
109 100 102 103 105 108 gsumpropd RRingKBPk0Ak·˙k×˙X=1𝑜mPolyRk0Ak·˙k×˙X
110 eqid 0P=0P
111 8 1 110 ply1mpl0 0P=01𝑜mPolyR
112 8 mpllmod 1𝑜ωRRing1𝑜mPolyRLMod
113 12 17 112 sylancr RRingKB1𝑜mPolyRLMod
114 lmodcmn 1𝑜mPolyRLMod1𝑜mPolyRCMnd
115 113 114 syl RRingKB1𝑜mPolyRCMnd
116 98 a1i RRingKB0V
117 1 ply1lmod RRingPLMod
118 117 ad2antrr RRingKBk0PLMod
119 eqid BaseR=BaseR
120 7 3 1 119 coe1f KBA:0BaseR
121 120 adantl RRingKBA:0BaseR
122 121 ffvelcdmda RRingKBk0AkBaseR
123 1 ply1sca RRingR=ScalarP
124 123 eqcomd RRingScalarP=R
125 124 ad2antrr RRingKBk0ScalarP=R
126 125 fveq2d RRingKBk0BaseScalarP=BaseR
127 122 126 eleqtrrd RRingKBk0AkBaseScalarP
128 75 ad2antrr RRingKBk0MMnd
129 simpr RRingKBk0k0
130 82 ad2antrr RRingKBk0XB
131 58 6 128 129 130 mulgnn0cld RRingKBk0k×˙XB
132 eqid ScalarP=ScalarP
133 eqid BaseScalarP=BaseScalarP
134 3 132 4 133 lmodvscl PLModAkBaseScalarPk×˙XBAk·˙k×˙XB
135 118 127 131 134 syl3anc RRingKBk0Ak·˙k×˙XB
136 135 fmpttd RRingKBk0Ak·˙k×˙X:0B
137 1 2 3 4 5 6 7 ply1coefsupp RRingKBfinSupp0Pk0Ak·˙k×˙X
138 eqid a01𝑜a=a01𝑜a
139 43 98 29 138 mapsnf1o2 a01𝑜a:01𝑜1-1 onto0
140 139 a1i RRingKBa01𝑜a:01𝑜1-1 onto0
141 15 111 115 116 136 137 140 gsumf1o RRingKB1𝑜mPolyRk0Ak·˙k×˙X=1𝑜mPolyRk0Ak·˙k×˙Xa01𝑜a
142 eqidd RRingKBa01𝑜a=a01𝑜a
143 eqidd RRingKBk0Ak·˙k×˙X=k0Ak·˙k×˙X
144 fveq2 k=aAk=Aa
145 oveq1 k=ak×˙X=a×˙X
146 144 145 oveq12d k=aAk·˙k×˙X=Aa·˙a×˙X
147 81 142 143 146 fmptco RRingKBk0Ak·˙k×˙Xa01𝑜a=a01𝑜Aa·˙a×˙X
148 147 oveq2d RRingKB1𝑜mPolyRk0Ak·˙k×˙Xa01𝑜a=1𝑜mPolyRa01𝑜Aa·˙a×˙X
149 109 141 148 3eqtrrd RRingKB1𝑜mPolyRa01𝑜Aa·˙a×˙X=Pk0Ak·˙k×˙X
150 19 97 149 3eqtrd RRingKBK=Pk0Ak·˙k×˙X