Metamath Proof Explorer


Theorem prmgaplem7

Description: Lemma for prmgap . (Contributed by AV, 12-Aug-2020) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Hypotheses prmgaplem7.n φN
prmgaplem7.f φF
prmgaplem7.i φi2N1<FN+igcdi
Assertion prmgaplem7 φpqp<FN+2FN+N<qzp+1..^qz

Proof

Step Hyp Ref Expression
1 prmgaplem7.n φN
2 prmgaplem7.f φF
3 prmgaplem7.i φi2N1<FN+igcdi
4 elmapi FF:
5 2 4 syl φF:
6 5 1 ffvelcdmd φFN
7 simpr φFNFN
8 elnnuz FNFN1
9 7 8 sylib φFNFN1
10 2z 2
11 10 eluzaddi FN1FN+21+2
12 9 11 syl φFNFN+21+2
13 1p2e3 1+2=3
14 13 eqcomi 3=1+2
15 14 fveq2i 3=1+2
16 12 15 eleqtrrdi φFNFN+23
17 prmgaplem5 FN+23pp<FN+2rp+1..^FN+2r
18 16 17 syl φFNpp<FN+2rp+1..^FN+2r
19 1 anim1ci φFNFNN
20 nnaddcl FNNFN+N
21 19 20 syl φFNFN+N
22 prmgaplem6 FN+NqFN+N<qsFN+N+1..^qs
23 21 22 syl φFNqFN+N<qsFN+N+1..^qs
24 reeanv pqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qspp<FN+2rp+1..^FN+2rqFN+N<qsFN+N+1..^qs
25 simprll φFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsp<FN+2
26 simprrl φFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsFN+N<q
27 nnz FNFN
28 27 adantl φFNFN
29 10 a1i φFN2
30 28 29 zaddcld φFNFN+2
31 30 ad2antrr φFNpqFN+2
32 31 anim1ci φFNpqzp+1..^qzp+1..^qFN+2
33 fzospliti zp+1..^qFN+2zp+1..^FN+2zFN+2..^q
34 32 33 syl φFNpqzp+1..^qzp+1..^FN+2zFN+2..^q
35 34 ex φFNpqzp+1..^qzp+1..^FN+2zFN+2..^q
36 neleq1 r=zrz
37 36 rspcv zp+1..^FN+2rp+1..^FN+2rz
38 37 adantld zp+1..^FN+2p<FN+2rp+1..^FN+2rz
39 38 adantrd zp+1..^FN+2p<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsz
40 39 a1d zp+1..^FN+2φFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsz
41 21 nnzd φFNFN+N
42 41 peano2zd φFNFN+N+1
43 42 ad2antrr φFNpqFN+N+1
44 43 anim1ci φFNpqzFN+2..^qzFN+2..^qFN+N+1
45 fzospliti zFN+2..^qFN+N+1zFN+2..^FN+N+1zFN+N+1..^q
46 44 45 syl φFNpqzFN+2..^qzFN+2..^FN+N+1zFN+N+1..^q
47 46 ex φFNpqzFN+2..^qzFN+2..^FN+N+1zFN+N+1..^q
48 1 nnzd φN
49 fzshftral 2NFNi2N1<FN+igcdij2+FNN+FN[˙jFN/i]˙1<FN+igcdi
50 10 48 27 49 mp3an3an φFNi2N1<FN+igcdij2+FNN+FN[˙jFN/i]˙1<FN+igcdi
51 2cnd φ2
52 nncn FNFN
53 addcom 2FN2+FN=FN+2
54 51 52 53 syl2an φFN2+FN=FN+2
55 1 nncnd φN
56 addcom NFNN+FN=FN+N
57 55 52 56 syl2an φFNN+FN=FN+N
58 54 57 oveq12d φFN2+FNN+FN=FN+2FN+N
59 ovex jFNV
60 sbcbr2g jFNV[˙jFN/i]˙1<FN+igcdi1<jFN/iFN+igcdi
61 59 60 mp1i φFN[˙jFN/i]˙1<FN+igcdi1<jFN/iFN+igcdi
62 csbov12g jFNVjFN/iFN+igcdi=jFN/iFN+igcdjFN/ii
63 59 62 mp1i φFNjFN/iFN+igcdi=jFN/iFN+igcdjFN/ii
64 csbov2g jFNVjFN/iFN+i=FN+jFN/ii
65 59 64 mp1i φFNjFN/iFN+i=FN+jFN/ii
66 csbvarg jFNVjFN/ii=jFN
67 66 oveq2d jFNVFN+jFN/ii=FN+j-FN
68 59 67 mp1i φFNFN+jFN/ii=FN+j-FN
69 65 68 eqtrd φFNjFN/iFN+i=FN+j-FN
70 59 66 mp1i φFNjFN/ii=jFN
71 69 70 oveq12d φFNjFN/iFN+igcdjFN/ii=FN+j-FNgcdjFN
72 63 71 eqtrd φFNjFN/iFN+igcdi=FN+j-FNgcdjFN
73 72 breq2d φFN1<jFN/iFN+igcdi1<FN+j-FNgcdjFN
74 61 73 bitrd φFN[˙jFN/i]˙1<FN+igcdi1<FN+j-FNgcdjFN
75 58 74 raleqbidv φFNj2+FNN+FN[˙jFN/i]˙1<FN+igcdijFN+2FN+N1<FN+j-FNgcdjFN
76 fzval3 FN+NFN+2FN+N=FN+2..^FN+N+1
77 76 eqcomd FN+NFN+2..^FN+N+1=FN+2FN+N
78 41 77 syl φFNFN+2..^FN+N+1=FN+2FN+N
79 78 eleq2d φFNzFN+2..^FN+N+1zFN+2FN+N
80 79 biimpa φFNzFN+2..^FN+N+1zFN+2FN+N
81 oveq1 j=zjFN=zFN
82 81 oveq2d j=zFN+j-FN=FN+z-FN
83 82 81 oveq12d j=zFN+j-FNgcdjFN=FN+z-FNgcdzFN
84 83 breq2d j=z1<FN+j-FNgcdjFN1<FN+z-FNgcdzFN
85 84 rspcv zFN+2FN+NjFN+2FN+N1<FN+j-FNgcdjFN1<FN+z-FNgcdzFN
86 80 85 syl φFNzFN+2..^FN+N+1jFN+2FN+N1<FN+j-FNgcdjFN1<FN+z-FNgcdzFN
87 52 adantl φFNFN
88 elfzoelz zFN+2..^FN+N+1z
89 88 zcnd zFN+2..^FN+N+1z
90 pncan3 FNzFN+z-FN=z
91 87 89 90 syl2an φFNzFN+2..^FN+N+1FN+z-FN=z
92 91 oveq1d φFNzFN+2..^FN+N+1FN+z-FNgcdzFN=zgcdzFN
93 88 adantl φFNzFN+2..^FN+N+1z
94 zsubcl zFNzFN
95 88 28 94 syl2anr φFNzFN+2..^FN+N+1zFN
96 93 95 gcdcomd φFNzFN+2..^FN+N+1zgcdzFN=zFNgcdz
97 92 96 eqtrd φFNzFN+2..^FN+N+1FN+z-FNgcdzFN=zFNgcdz
98 97 breq2d φFNzFN+2..^FN+N+11<FN+z-FNgcdzFN1<zFNgcdz
99 elfzo2 zFN+2..^FN+N+1zFN+2FN+N+1z<FN+N+1
100 eluz2 zFN+2FN+2zFN+2z
101 nnre FNFN
102 101 ad2antll zφFNFN
103 2rp 2+
104 103 a1i zφFN2+
105 102 104 ltaddrpd zφFNFN<FN+2
106 2re 2
107 106 a1i FN2
108 101 107 readdcld FNFN+2
109 108 ad2antll zφFNFN+2
110 zre zz
111 110 adantr zφFNz
112 ltletr FNFN+2zFN<FN+2FN+2zFN<z
113 102 109 111 112 syl3anc zφFNFN<FN+2FN+2zFN<z
114 105 113 mpand zφFNFN+2zFN<z
115 114 impancom zFN+2zφFNFN<z
116 115 3adant1 FN+2zFN+2zφFNFN<z
117 100 116 sylbi zFN+2φFNFN<z
118 117 3ad2ant1 zFN+2FN+N+1z<FN+N+1φFNFN<z
119 99 118 sylbi zFN+2..^FN+N+1φFNFN<z
120 119 impcom φFNzFN+2..^FN+N+1FN<z
121 101 adantl φFNFN
122 88 zred zFN+2..^FN+N+1z
123 posdif FNzFN<z0<zFN
124 121 122 123 syl2an φFNzFN+2..^FN+N+1FN<z0<zFN
125 120 124 mpbid φFNzFN+2..^FN+N+10<zFN
126 elnnz zFNzFN0<zFN
127 95 125 126 sylanbrc φFNzFN+2..^FN+N+1zFN
128 106 a1i zφFN2
129 nngt0 FN0<FN
130 129 ad2antll zφFN0<FN
131 2pos 0<2
132 131 a1i zφFN0<2
133 102 128 130 132 addgt0d zφFN0<FN+2
134 0red zφFN0
135 ltletr 0FN+2z0<FN+2FN+2z0<z
136 134 109 111 135 syl3anc zφFN0<FN+2FN+2z0<z
137 133 136 mpand zφFNFN+2z0<z
138 137 impancom zFN+2zφFN0<z
139 138 3adant1 FN+2zFN+2zφFN0<z
140 100 139 sylbi zFN+2φFN0<z
141 140 3ad2ant1 zFN+2FN+N+1z<FN+N+1φFN0<z
142 99 141 sylbi zFN+2..^FN+N+1φFN0<z
143 142 impcom φFNzFN+2..^FN+N+10<z
144 elnnz zz0<z
145 93 143 144 sylanbrc φFNzFN+2..^FN+N+1z
146 129 adantl φFN0<FN
147 146 adantr φFNzFN+2..^FN+N+10<FN
148 ltsubpos FNz0<FNzFN<z
149 121 122 148 syl2an φFNzFN+2..^FN+N+10<FNzFN<z
150 147 149 mpbid φFNzFN+2..^FN+N+1zFN<z
151 ncoprmlnprm zFNzzFN<z1<zFNgcdzz
152 127 145 150 151 syl3anc φFNzFN+2..^FN+N+11<zFNgcdzz
153 98 152 sylbid φFNzFN+2..^FN+N+11<FN+z-FNgcdzFNz
154 86 153 syld φFNzFN+2..^FN+N+1jFN+2FN+N1<FN+j-FNgcdjFNz
155 154 ex φFNzFN+2..^FN+N+1jFN+2FN+N1<FN+j-FNgcdjFNz
156 155 com23 φFNjFN+2FN+N1<FN+j-FNgcdjFNzFN+2..^FN+N+1z
157 75 156 sylbid φFNj2+FNN+FN[˙jFN/i]˙1<FN+igcdizFN+2..^FN+N+1z
158 50 157 sylbid φFNi2N1<FN+igcdizFN+2..^FN+N+1z
159 158 ex φFNi2N1<FN+igcdizFN+2..^FN+N+1z
160 3 159 mpid φFNzFN+2..^FN+N+1z
161 160 imp φFNzFN+2..^FN+N+1z
162 161 ad2antrr φFNpqzFN+2..^FN+N+1z
163 162 impcom zFN+2..^FN+N+1φFNpqz
164 163 a1d zFN+2..^FN+N+1φFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsz
165 164 ex zFN+2..^FN+N+1φFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsz
166 neleq1 s=zsz
167 166 rspcv zFN+N+1..^qsFN+N+1..^qsz
168 167 adantld zFN+N+1..^qFN+N<qsFN+N+1..^qsz
169 168 adantld zFN+N+1..^qp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsz
170 169 a1d zFN+N+1..^qφFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsz
171 165 170 jaoi zFN+2..^FN+N+1zFN+N+1..^qφFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsz
172 171 com12 φFNpqzFN+2..^FN+N+1zFN+N+1..^qp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsz
173 47 172 syldc zFN+2..^qφFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsz
174 40 173 jaoi zp+1..^FN+2zFN+2..^qφFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsz
175 174 com12 φFNpqzp+1..^FN+2zFN+2..^qp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsz
176 35 175 syld φFNpqzp+1..^qp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsz
177 176 com23 φFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qszp+1..^qz
178 177 imp31 φFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qszp+1..^qz
179 178 ralrimiva φFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qszp+1..^qz
180 25 26 179 3jca φFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsp<FN+2FN+N<qzp+1..^qz
181 180 ex φFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsp<FN+2FN+N<qzp+1..^qz
182 181 reximdva φFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qsqp<FN+2FN+N<qzp+1..^qz
183 182 reximdva φFNpqp<FN+2rp+1..^FN+2rFN+N<qsFN+N+1..^qspqp<FN+2FN+N<qzp+1..^qz
184 24 183 biimtrrid φFNpp<FN+2rp+1..^FN+2rqFN+N<qsFN+N+1..^qspqp<FN+2FN+N<qzp+1..^qz
185 18 23 184 mp2and φFNpqp<FN+2FN+N<qzp+1..^qz
186 6 185 mpdan φpqp<FN+2FN+N<qzp+1..^qz