Metamath Proof Explorer


Theorem pwcfsdom

Description: A corollary of Konig's Theorem konigth . Theorem 11.28 of TakeutiZaring p. 108. (Contributed by Mario Carneiro, 20-Mar-2013)

Ref Expression
Hypothesis pwcfsdom.1 H=ycfAharfy
Assertion pwcfsdom AAcfA

Proof

Step Hyp Ref Expression
1 pwcfsdom.1 H=ycfAharfy
2 onzsl AOnA=xOnA=sucxAVLimA
3 2 biimpi AOnA=xOnA=sucxAVLimA
4 cfom cfω=ω
5 aleph0 =ω
6 5 fveq2i cf=cfω
7 4 6 5 3eqtr4i cf=
8 2fveq3 A=cfA=cf
9 fveq2 A=A=
10 7 8 9 3eqtr4a A=cfA=A
11 fvex AV
12 11 canth2 A𝒫A
13 11 pw2en 𝒫A2𝑜A
14 sdomentr A𝒫A𝒫A2𝑜AA2𝑜A
15 12 13 14 mp2an A2𝑜A
16 alephon AOn
17 alephgeom AOnωA
18 omelon ωOn
19 2onn 2𝑜ω
20 onelss ωOn2𝑜ω2𝑜ω
21 18 19 20 mp2 2𝑜ω
22 sstr 2𝑜ωωA2𝑜A
23 21 22 mpan ωA2𝑜A
24 17 23 sylbi AOn2𝑜A
25 ssdomg AOn2𝑜A2𝑜A
26 16 24 25 mpsyl AOn2𝑜A
27 mapdom1 2𝑜A2𝑜AAA
28 26 27 syl AOn2𝑜AAA
29 sdomdomtr A2𝑜A2𝑜AAAAAA
30 15 28 29 sylancr AOnAAA
31 oveq2 cfA=AAcfA=AA
32 31 breq2d cfA=AAAcfAAAA
33 30 32 syl5ibrcom AOncfA=AAAcfA
34 10 33 syl5 AOnA=AAcfA
35 alephreg cfsucx=sucx
36 2fveq3 A=sucxcfA=cfsucx
37 fveq2 A=sucxA=sucx
38 35 36 37 3eqtr4a A=sucxcfA=A
39 38 rexlimivw xOnA=sucxcfA=A
40 39 33 syl5 AOnxOnA=sucxAAcfA
41 cfsmo AOnff:cfAASmofzAwcfAzfw
42 limelon AVLimAAOn
43 ffn f:cfAAfFncfA
44 fnrnfv fFncfAranf=y|xcfAy=fx
45 44 unieqd fFncfAranf=y|xcfAy=fx
46 43 45 syl f:cfAAranf=y|xcfAy=fx
47 fvex fxV
48 47 dfiun2 xcfAfx=y|xcfAy=fx
49 46 48 eqtr4di f:cfAAranf=xcfAfx
50 49 ad2antrl AOnf:cfAAzAwcfAzfwranf=xcfAfx
51 fnfvelrn fFncfAwcfAfwranf
52 43 51 sylan f:cfAAwcfAfwranf
53 sseq2 y=fwzyzfw
54 53 rspcev fwranfzfwyranfzy
55 52 54 sylan f:cfAAwcfAzfwyranfzy
56 55 rexlimdva2 f:cfAAwcfAzfwyranfzy
57 56 ralimdv f:cfAAzAwcfAzfwzAyranfzy
58 57 imp f:cfAAzAwcfAzfwzAyranfzy
59 58 adantl AOnf:cfAAzAwcfAzfwzAyranfzy
60 alephislim AOnLimA
61 60 biimpi AOnLimA
62 frn f:cfAAranfA
63 62 adantr f:cfAAzAwcfAzfwranfA
64 coflim LimAranfAranf=AzAyranfzy
65 61 63 64 syl2an AOnf:cfAAzAwcfAzfwranf=AzAyranfzy
66 59 65 mpbird AOnf:cfAAzAwcfAzfwranf=A
67 50 66 eqtr3d AOnf:cfAAzAwcfAzfwxcfAfx=A
68 ffvelcdm f:cfAAxcfAfxA
69 16 oneli fxAfxOn
70 harcard cardharfx=harfx
71 iscard cardharfx=harfxharfxOnyharfxyharfx
72 71 simprbi cardharfx=harfxyharfxyharfx
73 70 72 ax-mp yharfxyharfx
74 domrefg fxVfxfx
75 47 74 ax-mp fxfx
76 elharval fxharfxfxOnfxfx
77 76 biimpri fxOnfxfxfxharfx
78 75 77 mpan2 fxOnfxharfx
79 breq1 y=fxyharfxfxharfx
80 79 rspccv yharfxyharfxfxharfxfxharfx
81 73 78 80 mpsyl fxOnfxharfx
82 68 69 81 3syl f:cfAAxcfAfxharfx
83 harcl harfxOn
84 2fveq3 y=xharfy=harfx
85 84 1 fvmptg xcfAharfxOnHx=harfx
86 83 85 mpan2 xcfAHx=harfx
87 86 breq2d xcfAfxHxfxharfx
88 87 adantl f:cfAAxcfAfxHxfxharfx
89 82 88 mpbird f:cfAAxcfAfxHx
90 89 ralrimiva f:cfAAxcfAfxHx
91 fvex cfAV
92 eqid xcfAfx=xcfAfx
93 eqid xcfAHx=xcfAHx
94 91 92 93 konigth xcfAfxHxxcfAfxxcfAHx
95 90 94 syl f:cfAAxcfAfxxcfAHx
96 95 ad2antrl AOnf:cfAAzAwcfAzfwxcfAfxxcfAHx
97 67 96 eqbrtrrd AOnf:cfAAzAwcfAzfwAxcfAHx
98 42 97 sylan AVLimAf:cfAAzAwcfAzfwAxcfAHx
99 ovex AcfAV
100 68 ex f:cfAAxcfAfxA
101 alephlim AVLimAA=yAy
102 101 eleq2d AVLimAfxAfxyAy
103 eliun fxyAyyAfxy
104 alephcard cardy=y
105 104 eleq2i fxcardyfxy
106 cardsdomelir fxcardyfxy
107 105 106 sylbir fxyfxy
108 elharval yharfxyOnyfx
109 108 simprbi yharfxyfx
110 domnsym yfx¬fxy
111 109 110 syl yharfx¬fxy
112 111 con2i fxy¬yharfx
113 alephon yOn
114 ontri1 harfxOnyOnharfxy¬yharfx
115 83 113 114 mp2an harfxy¬yharfx
116 112 115 sylibr fxyharfxy
117 107 116 syl fxyharfxy
118 alephord2i AOnyAyA
119 118 imp AOnyAyA
120 ontr2 harfxOnAOnharfxyyAharfxA
121 83 16 120 mp2an harfxyyAharfxA
122 117 119 121 syl2anr AOnyAfxyharfxA
123 122 rexlimdva2 AOnyAfxyharfxA
124 103 123 biimtrid AOnfxyAyharfxA
125 42 124 syl AVLimAfxyAyharfxA
126 102 125 sylbid AVLimAfxAharfxA
127 100 126 sylan9r AVLimAf:cfAAxcfAharfxA
128 127 imp AVLimAf:cfAAxcfAharfxA
129 84 cbvmptv ycfAharfy=xcfAharfx
130 1 129 eqtri H=xcfAharfx
131 128 130 fmptd AVLimAf:cfAAH:cfAA
132 ffvelcdm H:cfAAxcfAHxA
133 onelss AOnHxAHxA
134 16 132 133 mpsyl H:cfAAxcfAHxA
135 134 ralrimiva H:cfAAxcfAHxA
136 ss2ixp xcfAHxAxcfAHxxcfAA
137 91 11 ixpconst xcfAA=AcfA
138 136 137 sseqtrdi xcfAHxAxcfAHxAcfA
139 131 135 138 3syl AVLimAf:cfAAxcfAHxAcfA
140 ssdomg AcfAVxcfAHxAcfAxcfAHxAcfA
141 99 139 140 mpsyl AVLimAf:cfAAxcfAHxAcfA
142 141 adantrr AVLimAf:cfAAzAwcfAzfwxcfAHxAcfA
143 sdomdomtr AxcfAHxxcfAHxAcfAAAcfA
144 98 142 143 syl2anc AVLimAf:cfAAzAwcfAzfwAAcfA
145 144 expcom f:cfAAzAwcfAzfwAVLimAAAcfA
146 145 3adant2 f:cfAASmofzAwcfAzfwAVLimAAAcfA
147 146 exlimiv ff:cfAASmofzAwcfAzfwAVLimAAAcfA
148 16 41 147 mp2b AVLimAAAcfA
149 148 a1i AOnAVLimAAAcfA
150 34 40 149 3jaod AOnA=xOnA=sucxAVLimAAAcfA
151 3 150 mpd AOnAAcfA
152 alephfnon FnOn
153 152 fndmi dom=On
154 153 eleq2i AdomAOn
155 ndmfv ¬AdomA=
156 1n0 1𝑜
157 1oex 1𝑜V
158 157 0sdom 1𝑜1𝑜
159 156 158 mpbir 1𝑜
160 id A=A=
161 fveq2 A=cfA=cf
162 cf0 cf=
163 161 162 eqtrdi A=cfA=
164 160 163 oveq12d A=AcfA=
165 0ex V
166 map0e V=1𝑜
167 165 166 ax-mp =1𝑜
168 164 167 eqtrdi A=AcfA=1𝑜
169 160 168 breq12d A=AAcfA1𝑜
170 159 169 mpbiri A=AAcfA
171 155 170 syl ¬AdomAAcfA
172 154 171 sylnbir ¬AOnAAcfA
173 151 172 pm2.61i AAcfA