Metamath Proof Explorer


Theorem relowlssretop

Description: The lower limit topology on the reals is finer than the standard topology. (Contributed by ML, 1-Aug-2020)

Ref Expression
Hypothesis relowlssretop.1 I = . 2
Assertion relowlssretop topGen ran . topGen I

Proof

Step Hyp Ref Expression
1 relowlssretop.1 I = . 2
2 ioof . : * × * 𝒫
3 ffn . : * × * 𝒫 . Fn * × *
4 ovelrn . Fn * × * o ran . a * b * o = a b
5 2 3 4 mp2b o ran . a * b * o = a b
6 elxr b * b b = +∞ b = −∞
7 simpr a * b b
8 elioore x a b x
9 7 8 anim12ci a * b x a b x b
10 1 icoreelrn x b z | x z z < b I
11 9 10 syl a * b x a b z | x z z < b I
12 8 adantl a * b x a b x
13 8 leidd x a b x x
14 13 adantl a * b x a b x x
15 7 rexrd a * b b *
16 elioo1 a * b * x a b x * a < x x < b
17 15 16 syldan a * b x a b x * a < x x < b
18 17 biimpa a * b x a b x * a < x x < b
19 18 simp3d a * b x a b x < b
20 rexr x x *
21 20 3anim1i x x x x < b x * x x x < b
22 rexr b b *
23 elico1 x * b * x x b x * x x x < b
24 20 22 23 syl2an x b x x b x * x x x < b
25 24 biimprd x b x * x x x < b x x b
26 9 21 25 syl2im a * b x a b x x x x < b x x b
27 icoreval x b x b = z | x z z < b
28 9 27 syl a * b x a b x b = z | x z z < b
29 28 eleq2d a * b x a b x x b x z | x z z < b
30 26 29 sylibd a * b x a b x x x x < b x z | x z z < b
31 12 14 19 30 mp3and a * b x a b x z | x z z < b
32 nfv z a * b * x a b
33 nfrab1 _ z z | x z z < b
34 nfcv _ z a b
35 iooval a * b * a b = x * | a < x x < b
36 35 eleq2d a * b * x a b x x * | a < x x < b
37 36 anbi1d a * b * x a b z z | x z z < b x x * | a < x x < b z z | x z z < b
38 37 pm5.32i a * b * x a b z z | x z z < b a * b * x x * | a < x x < b z z | x z z < b
39 rabid x x * | a < x x < b x * a < x x < b
40 rabid z z | x z z < b z x z z < b
41 39 40 anbi12i x x * | a < x x < b z z | x z z < b x * a < x x < b z x z z < b
42 simpl z x z z < b z
43 42 rexrd z x z z < b z *
44 43 ad2antll a * x * a < x x < b z x z z < b z *
45 simpl x * a < x x < b x *
46 45 43 anim12i x * a < x x < b z x z z < b x * z *
47 46 anim2i a * x * a < x x < b z x z z < b a * x * z *
48 3anass a * x * z * a * x * z *
49 47 48 sylibr a * x * a < x x < b z x z z < b a * x * z *
50 simprl x * a < x x < b a < x
51 simprl z x z z < b x z
52 50 51 anim12i x * a < x x < b z x z z < b a < x x z
53 52 adantl a * x * a < x x < b z x z z < b a < x x z
54 xrltletr a * x * z * a < x x z a < z
55 49 53 54 sylc a * x * a < x x < b z x z z < b a < z
56 simprr z x z z < b z < b
57 56 ad2antll a * x * a < x x < b z x z z < b z < b
58 55 57 jca a * x * a < x x < b z x z z < b a < z z < b
59 rabid z z * | a < z z < b z * a < z z < b
60 44 58 59 sylanbrc a * x * a < x x < b z x z z < b z z * | a < z z < b
61 60 adantlr a * b * x * a < x x < b z x z z < b z z * | a < z z < b
62 iooval a * b * a b = z * | a < z z < b
63 62 adantr a * b * x * a < x x < b z x z z < b a b = z * | a < z z < b
64 61 63 eleqtrrd a * b * x * a < x x < b z x z z < b z a b
65 41 64 sylan2b a * b * x x * | a < x x < b z z | x z z < b z a b
66 38 65 sylbi a * b * x a b z z | x z z < b z a b
67 66 expr a * b * x a b z z | x z z < b z a b
68 32 33 34 67 ssrd a * b * x a b z | x z z < b a b
69 22 68 sylanl2 a * b x a b z | x z z < b a b
70 eleq2 i = z | x z z < b x i x z | x z z < b
71 sseq1 i = z | x z z < b i a b z | x z z < b a b
72 70 71 anbi12d i = z | x z z < b x i i a b x z | x z z < b z | x z z < b a b
73 72 rspcev z | x z z < b I x z | x z z < b z | x z z < b a b i I x i i a b
74 11 31 69 73 syl12anc a * b x a b i I x i i a b
75 74 ancom1s b a * x a b i I x i i a b
76 75 expl b a * x a b i I x i i a b
77 8 adantl a * b = +∞ x a b x
78 peano2re x x + 1
79 1 icoreelrn x x + 1 z | x z z < x + 1 I
80 77 78 79 syl2anc2 a * b = +∞ x a b z | x z z < x + 1 I
81 elioore x a +∞ x
82 81 adantl a * x a +∞ x
83 82 leidd a * x a +∞ x x
84 82 ltp1d a * x a +∞ x < x + 1
85 82 83 84 jca32 a * x a +∞ x x x x < x + 1
86 breq2 z = x x z x x
87 breq1 z = x z < x + 1 x < x + 1
88 86 87 anbi12d z = x x z z < x + 1 x x x < x + 1
89 88 elrab x z | x z z < x + 1 x x x x < x + 1
90 85 89 sylibr a * x a +∞ x z | x z z < x + 1
91 nfv z a * x a +∞
92 nfrab1 _ z z | x z z < x + 1
93 nfcv _ z a +∞
94 rabid z z | x z z < x + 1 z x z z < x + 1
95 simprl a * x a +∞ z x z z < x + 1 z
96 simpll a * x a +∞ z x z z < x + 1 a *
97 82 adantr a * x a +∞ z x z z < x + 1 x
98 97 rexrd a * x a +∞ z x z z < x + 1 x *
99 95 rexrd a * x a +∞ z x z z < x + 1 z *
100 elioopnf a * x a +∞ x a < x
101 100 simplbda a * x a +∞ a < x
102 101 adantr a * x a +∞ z x z z < x + 1 a < x
103 simprl z x z z < x + 1 x z
104 103 adantl a * x a +∞ z x z z < x + 1 x z
105 96 98 99 102 104 xrltletrd a * x a +∞ z x z z < x + 1 a < z
106 elioopnf a * z a +∞ z a < z
107 106 biimprd a * z a < z z a +∞
108 107 adantr a * x a +∞ z a < z z a +∞
109 108 adantr a * x a +∞ z x z z < x + 1 z a < z z a +∞
110 95 105 109 mp2and a * x a +∞ z x z z < x + 1 z a +∞
111 110 ex a * x a +∞ z x z z < x + 1 z a +∞
112 94 111 syl5bi a * x a +∞ z z | x z z < x + 1 z a +∞
113 91 92 93 112 ssrd a * x a +∞ z | x z z < x + 1 a +∞
114 90 113 jca a * x a +∞ x z | x z z < x + 1 z | x z z < x + 1 a +∞
115 oveq2 b = +∞ a b = a +∞
116 115 eleq2d b = +∞ x a b x a +∞
117 116 anbi2d b = +∞ a * x a b a * x a +∞
118 115 sseq2d b = +∞ z | x z z < x + 1 a b z | x z z < x + 1 a +∞
119 118 anbi2d b = +∞ x z | x z z < x + 1 z | x z z < x + 1 a b x z | x z z < x + 1 z | x z z < x + 1 a +∞
120 117 119 imbi12d b = +∞ a * x a b x z | x z z < x + 1 z | x z z < x + 1 a b a * x a +∞ x z | x z z < x + 1 z | x z z < x + 1 a +∞
121 114 120 mpbiri b = +∞ a * x a b x z | x z z < x + 1 z | x z z < x + 1 a b
122 121 impl b = +∞ a * x a b x z | x z z < x + 1 z | x z z < x + 1 a b
123 122 ancom1s a * b = +∞ x a b x z | x z z < x + 1 z | x z z < x + 1 a b
124 eleq2 i = z | x z z < x + 1 x i x z | x z z < x + 1
125 sseq1 i = z | x z z < x + 1 i a b z | x z z < x + 1 a b
126 124 125 anbi12d i = z | x z z < x + 1 x i i a b x z | x z z < x + 1 z | x z z < x + 1 a b
127 126 rspcev z | x z z < x + 1 I x z | x z z < x + 1 z | x z z < x + 1 a b i I x i i a b
128 80 123 127 syl2anc a * b = +∞ x a b i I x i i a b
129 128 ancom1s b = +∞ a * x a b i I x i i a b
130 129 expl b = +∞ a * x a b i I x i i a b
131 8 adantl a * b = −∞ x a b x
132 oveq2 b = −∞ a b = a −∞
133 132 eleq2d b = −∞ x a b x a −∞
134 133 adantl a * b = −∞ x a b x a −∞
135 134 pm5.32i a * b = −∞ x a b a * b = −∞ x a −∞
136 nltmnf x * ¬ x < −∞
137 136 intnand x * ¬ a < x x < −∞
138 eliooord x a −∞ a < x x < −∞
139 137 138 nsyl x * ¬ x a −∞
140 139 pm2.21d x * x a −∞ a * b = −∞ i I x i i a b
141 140 impd x * x a −∞ a * b = −∞ i I x i i a b
142 141 ancomsd x * a * b = −∞ x a −∞ i I x i i a b
143 135 142 syl5bi x * a * b = −∞ x a b i I x i i a b
144 20 143 syl x a * b = −∞ x a b i I x i i a b
145 131 144 mpcom a * b = −∞ x a b i I x i i a b
146 145 ancom1s b = −∞ a * x a b i I x i i a b
147 146 expl b = −∞ a * x a b i I x i i a b
148 76 130 147 3jaoi b b = +∞ b = −∞ a * x a b i I x i i a b
149 6 148 sylbi b * a * x a b i I x i i a b
150 149 expdimp b * a * x a b i I x i i a b
151 150 ancoms a * b * x a b i I x i i a b
152 eleq2 o = a b x o x a b
153 sseq2 o = a b i o i a b
154 153 anbi2d o = a b x i i o x i i a b
155 154 rexbidv o = a b i I x i i o i I x i i a b
156 152 155 imbi12d o = a b x o i I x i i o x a b i I x i i a b
157 151 156 syl5ibrcom a * b * o = a b x o i I x i i o
158 157 rexlimivv a * b * o = a b x o i I x i i o
159 5 158 sylbi o ran . x o i I x i i o
160 159 rgen o ran . x o i I x i i o
161 160 rgenw x o ran . x o i I x i i o
162 iooex . V
163 162 rnex ran . V
164 unirnioo = ran .
165 1 icoreunrn = I
166 164 165 eqtr3i ran . = I
167 tgss2 ran . V ran . = I topGen ran . topGen I x ran . o ran . x o i I x i i o
168 163 166 167 mp2an topGen ran . topGen I x ran . o ran . x o i I x i i o
169 164 raleqi x o ran . x o i I x i i o x ran . o ran . x o i I x i i o
170 168 169 bitr4i topGen ran . topGen I x o ran . x o i I x i i o
171 161 170 mpbir topGen ran . topGen I