Metamath Proof Explorer


Theorem relowlssretop

Description: The lower limit topology on the reals is finer than the standard topology. (Contributed by ML, 1-Aug-2020)

Ref Expression
Hypothesis relowlssretop.1 I=.2
Assertion relowlssretop topGenran.topGenI

Proof

Step Hyp Ref Expression
1 relowlssretop.1 I=.2
2 ioof .:*×*𝒫
3 ffn .:*×*𝒫.Fn*×*
4 ovelrn .Fn*×*oran.a*b*o=ab
5 2 3 4 mp2b oran.a*b*o=ab
6 elxr b*bb=+∞b=−∞
7 simpr a*bb
8 elioore xabx
9 7 8 anim12ci a*bxabxb
10 1 icoreelrn xbz|xzz<bI
11 9 10 syl a*bxabz|xzz<bI
12 8 adantl a*bxabx
13 8 leidd xabxx
14 13 adantl a*bxabxx
15 7 rexrd a*bb*
16 elioo1 a*b*xabx*a<xx<b
17 15 16 syldan a*bxabx*a<xx<b
18 17 biimpa a*bxabx*a<xx<b
19 18 simp3d a*bxabx<b
20 rexr xx*
21 20 3anim1i xxxx<bx*xxx<b
22 rexr bb*
23 elico1 x*b*xxbx*xxx<b
24 20 22 23 syl2an xbxxbx*xxx<b
25 24 biimprd xbx*xxx<bxxb
26 9 21 25 syl2im a*bxabxxxx<bxxb
27 icoreval xbxb=z|xzz<b
28 9 27 syl a*bxabxb=z|xzz<b
29 28 eleq2d a*bxabxxbxz|xzz<b
30 26 29 sylibd a*bxabxxxx<bxz|xzz<b
31 12 14 19 30 mp3and a*bxabxz|xzz<b
32 nfv za*b*xab
33 nfrab1 _zz|xzz<b
34 nfcv _zab
35 iooval a*b*ab=x*|a<xx<b
36 35 eleq2d a*b*xabxx*|a<xx<b
37 36 anbi1d a*b*xabzz|xzz<bxx*|a<xx<bzz|xzz<b
38 37 pm5.32i a*b*xabzz|xzz<ba*b*xx*|a<xx<bzz|xzz<b
39 rabid xx*|a<xx<bx*a<xx<b
40 rabid zz|xzz<bzxzz<b
41 39 40 anbi12i xx*|a<xx<bzz|xzz<bx*a<xx<bzxzz<b
42 simpl zxzz<bz
43 42 rexrd zxzz<bz*
44 43 ad2antll a*x*a<xx<bzxzz<bz*
45 simpl x*a<xx<bx*
46 45 43 anim12i x*a<xx<bzxzz<bx*z*
47 46 anim2i a*x*a<xx<bzxzz<ba*x*z*
48 3anass a*x*z*a*x*z*
49 47 48 sylibr a*x*a<xx<bzxzz<ba*x*z*
50 simprl x*a<xx<ba<x
51 simprl zxzz<bxz
52 50 51 anim12i x*a<xx<bzxzz<ba<xxz
53 52 adantl a*x*a<xx<bzxzz<ba<xxz
54 xrltletr a*x*z*a<xxza<z
55 49 53 54 sylc a*x*a<xx<bzxzz<ba<z
56 simprr zxzz<bz<b
57 56 ad2antll a*x*a<xx<bzxzz<bz<b
58 55 57 jca a*x*a<xx<bzxzz<ba<zz<b
59 rabid zz*|a<zz<bz*a<zz<b
60 44 58 59 sylanbrc a*x*a<xx<bzxzz<bzz*|a<zz<b
61 60 adantlr a*b*x*a<xx<bzxzz<bzz*|a<zz<b
62 iooval a*b*ab=z*|a<zz<b
63 62 adantr a*b*x*a<xx<bzxzz<bab=z*|a<zz<b
64 61 63 eleqtrrd a*b*x*a<xx<bzxzz<bzab
65 41 64 sylan2b a*b*xx*|a<xx<bzz|xzz<bzab
66 38 65 sylbi a*b*xabzz|xzz<bzab
67 66 expr a*b*xabzz|xzz<bzab
68 32 33 34 67 ssrd a*b*xabz|xzz<bab
69 22 68 sylanl2 a*bxabz|xzz<bab
70 eleq2 i=z|xzz<bxixz|xzz<b
71 sseq1 i=z|xzz<biabz|xzz<bab
72 70 71 anbi12d i=z|xzz<bxiiabxz|xzz<bz|xzz<bab
73 72 rspcev z|xzz<bIxz|xzz<bz|xzz<babiIxiiab
74 11 31 69 73 syl12anc a*bxabiIxiiab
75 74 ancom1s ba*xabiIxiiab
76 75 expl ba*xabiIxiiab
77 8 adantl a*b=+∞xabx
78 peano2re xx+1
79 1 icoreelrn xx+1z|xzz<x+1I
80 77 78 79 syl2anc2 a*b=+∞xabz|xzz<x+1I
81 elioore xa+∞x
82 81 adantl a*xa+∞x
83 82 leidd a*xa+∞xx
84 82 ltp1d a*xa+∞x<x+1
85 82 83 84 jca32 a*xa+∞xxxx<x+1
86 breq2 z=xxzxx
87 breq1 z=xz<x+1x<x+1
88 86 87 anbi12d z=xxzz<x+1xxx<x+1
89 88 elrab xz|xzz<x+1xxxx<x+1
90 85 89 sylibr a*xa+∞xz|xzz<x+1
91 nfv za*xa+∞
92 nfrab1 _zz|xzz<x+1
93 nfcv _za+∞
94 rabid zz|xzz<x+1zxzz<x+1
95 simprl a*xa+∞zxzz<x+1z
96 simpll a*xa+∞zxzz<x+1a*
97 82 adantr a*xa+∞zxzz<x+1x
98 97 rexrd a*xa+∞zxzz<x+1x*
99 95 rexrd a*xa+∞zxzz<x+1z*
100 elioopnf a*xa+∞xa<x
101 100 simplbda a*xa+∞a<x
102 101 adantr a*xa+∞zxzz<x+1a<x
103 simprl zxzz<x+1xz
104 103 adantl a*xa+∞zxzz<x+1xz
105 96 98 99 102 104 xrltletrd a*xa+∞zxzz<x+1a<z
106 elioopnf a*za+∞za<z
107 106 biimprd a*za<zza+∞
108 107 adantr a*xa+∞za<zza+∞
109 108 adantr a*xa+∞zxzz<x+1za<zza+∞
110 95 105 109 mp2and a*xa+∞zxzz<x+1za+∞
111 110 ex a*xa+∞zxzz<x+1za+∞
112 94 111 biimtrid a*xa+∞zz|xzz<x+1za+∞
113 91 92 93 112 ssrd a*xa+∞z|xzz<x+1a+∞
114 90 113 jca a*xa+∞xz|xzz<x+1z|xzz<x+1a+∞
115 oveq2 b=+∞ab=a+∞
116 115 eleq2d b=+∞xabxa+∞
117 116 anbi2d b=+∞a*xaba*xa+∞
118 115 sseq2d b=+∞z|xzz<x+1abz|xzz<x+1a+∞
119 118 anbi2d b=+∞xz|xzz<x+1z|xzz<x+1abxz|xzz<x+1z|xzz<x+1a+∞
120 117 119 imbi12d b=+∞a*xabxz|xzz<x+1z|xzz<x+1aba*xa+∞xz|xzz<x+1z|xzz<x+1a+∞
121 114 120 mpbiri b=+∞a*xabxz|xzz<x+1z|xzz<x+1ab
122 121 impl b=+∞a*xabxz|xzz<x+1z|xzz<x+1ab
123 122 ancom1s a*b=+∞xabxz|xzz<x+1z|xzz<x+1ab
124 eleq2 i=z|xzz<x+1xixz|xzz<x+1
125 sseq1 i=z|xzz<x+1iabz|xzz<x+1ab
126 124 125 anbi12d i=z|xzz<x+1xiiabxz|xzz<x+1z|xzz<x+1ab
127 126 rspcev z|xzz<x+1Ixz|xzz<x+1z|xzz<x+1abiIxiiab
128 80 123 127 syl2anc a*b=+∞xabiIxiiab
129 128 ancom1s b=+∞a*xabiIxiiab
130 129 expl b=+∞a*xabiIxiiab
131 8 adantl a*b=−∞xabx
132 oveq2 b=−∞ab=a−∞
133 132 eleq2d b=−∞xabxa−∞
134 133 adantl a*b=−∞xabxa−∞
135 134 pm5.32i a*b=−∞xaba*b=−∞xa−∞
136 nltmnf x*¬x<−∞
137 136 intnand x*¬a<xx<−∞
138 eliooord xa−∞a<xx<−∞
139 137 138 nsyl x*¬xa−∞
140 139 pm2.21d x*xa−∞a*b=−∞iIxiiab
141 140 impd x*xa−∞a*b=−∞iIxiiab
142 141 ancomsd x*a*b=−∞xa−∞iIxiiab
143 135 142 biimtrid x*a*b=−∞xabiIxiiab
144 20 143 syl xa*b=−∞xabiIxiiab
145 131 144 mpcom a*b=−∞xabiIxiiab
146 145 ancom1s b=−∞a*xabiIxiiab
147 146 expl b=−∞a*xabiIxiiab
148 76 130 147 3jaoi bb=+∞b=−∞a*xabiIxiiab
149 6 148 sylbi b*a*xabiIxiiab
150 149 expdimp b*a*xabiIxiiab
151 150 ancoms a*b*xabiIxiiab
152 eleq2 o=abxoxab
153 sseq2 o=abioiab
154 153 anbi2d o=abxiioxiiab
155 154 rexbidv o=abiIxiioiIxiiab
156 152 155 imbi12d o=abxoiIxiioxabiIxiiab
157 151 156 syl5ibrcom a*b*o=abxoiIxiio
158 157 rexlimivv a*b*o=abxoiIxiio
159 5 158 sylbi oran.xoiIxiio
160 159 rgen oran.xoiIxiio
161 160 rgenw xoran.xoiIxiio
162 iooex .V
163 162 rnex ran.V
164 unirnioo =ran.
165 1 icoreunrn =I
166 164 165 eqtr3i ran.=I
167 tgss2 ran.Vran.=ItopGenran.topGenIxran.oran.xoiIxiio
168 163 166 167 mp2an topGenran.topGenIxran.oran.xoiIxiio
169 164 raleqi xoran.xoiIxiioxran.oran.xoiIxiio
170 168 169 bitr4i topGenran.topGenIxoran.xoiIxiio
171 161 170 mpbir topGenran.topGenI