Metamath Proof Explorer


Theorem reprpmtf1o

Description: Transposing 0 and X maps representations with a condition on the first index to transpositions with the same condition on the index X . (Contributed by Thierry Arnoux, 27-Dec-2021)

Ref Expression
Hypotheses reprpmtf1o.s φ S
reprpmtf1o.m φ M
reprpmtf1o.a φ A
reprpmtf1o.x φ X 0 ..^ S
reprpmtf1o.o O = c A repr S M | ¬ c 0 B
reprpmtf1o.p P = c A repr S M | ¬ c X B
reprpmtf1o.t T = if X = 0 I 0 ..^ S pmTrsp 0 ..^ S X 0
reprpmtf1o.f F = c P c T
Assertion reprpmtf1o φ F : P 1-1 onto O

Proof

Step Hyp Ref Expression
1 reprpmtf1o.s φ S
2 reprpmtf1o.m φ M
3 reprpmtf1o.a φ A
4 reprpmtf1o.x φ X 0 ..^ S
5 reprpmtf1o.o O = c A repr S M | ¬ c 0 B
6 reprpmtf1o.p P = c A repr S M | ¬ c X B
7 reprpmtf1o.t T = if X = 0 I 0 ..^ S pmTrsp 0 ..^ S X 0
8 reprpmtf1o.f F = c P c T
9 eqid A 0 ..^ S = A 0 ..^ S
10 eqid c A 0 ..^ S c T = c A 0 ..^ S c T
11 ovexd φ 0 ..^ S V
12 nnex V
13 12 a1i φ V
14 13 3 ssexd φ A V
15 lbfzo0 0 0 ..^ S S
16 1 15 sylibr φ 0 0 ..^ S
17 11 4 16 7 pmtridf1o φ T : 0 ..^ S 1-1 onto 0 ..^ S
18 9 9 10 11 11 14 17 fmptco1f1o φ c A 0 ..^ S c T : A 0 ..^ S 1-1 onto A 0 ..^ S
19 f1of1 c A 0 ..^ S c T : A 0 ..^ S 1-1 onto A 0 ..^ S c A 0 ..^ S c T : A 0 ..^ S 1-1 A 0 ..^ S
20 18 19 syl φ c A 0 ..^ S c T : A 0 ..^ S 1-1 A 0 ..^ S
21 ssrab2 c A 0 ..^ S | a 0 ..^ S c a = M A 0 ..^ S
22 6 ssrab3 P A repr S M
23 22 a1i φ P A repr S M
24 1 nnnn0d φ S 0
25 3 2 24 reprval φ A repr S M = c A 0 ..^ S | a 0 ..^ S c a = M
26 23 25 sseqtrd φ P c A 0 ..^ S | a 0 ..^ S c a = M
27 26 sselda φ c P c c A 0 ..^ S | a 0 ..^ S c a = M
28 21 27 sseldi φ c P c A 0 ..^ S
29 28 ex φ c P c A 0 ..^ S
30 29 ssrdv φ P A 0 ..^ S
31 f1ores c A 0 ..^ S c T : A 0 ..^ S 1-1 A 0 ..^ S P A 0 ..^ S c A 0 ..^ S c T P : P 1-1 onto c A 0 ..^ S c T P
32 20 30 31 syl2anc φ c A 0 ..^ S c T P : P 1-1 onto c A 0 ..^ S c T P
33 resmpt P A 0 ..^ S c A 0 ..^ S c T P = c P c T
34 30 33 syl φ c A 0 ..^ S c T P = c P c T
35 34 8 syl6eqr φ c A 0 ..^ S c T P = F
36 eqidd φ P = P
37 vex d V
38 37 a1i φ d V
39 10 38 30 elimampt φ d c A 0 ..^ S c T P c P d = c T
40 simpr φ c P d = c T d = c T
41 f1of c A 0 ..^ S c T : A 0 ..^ S 1-1 onto A 0 ..^ S c A 0 ..^ S c T : A 0 ..^ S A 0 ..^ S
42 18 41 syl φ c A 0 ..^ S c T : A 0 ..^ S A 0 ..^ S
43 42 ad2antrr φ c P d = c T c A 0 ..^ S c T : A 0 ..^ S A 0 ..^ S
44 10 fmpt c A 0 ..^ S c T A 0 ..^ S c A 0 ..^ S c T : A 0 ..^ S A 0 ..^ S
45 43 44 sylibr φ c P d = c T c A 0 ..^ S c T A 0 ..^ S
46 28 adantr φ c P d = c T c A 0 ..^ S
47 rspa c A 0 ..^ S c T A 0 ..^ S c A 0 ..^ S c T A 0 ..^ S
48 45 46 47 syl2anc φ c P d = c T c T A 0 ..^ S
49 40 48 eqeltrd φ c P d = c T d A 0 ..^ S
50 40 adantr φ c P d = c T a 0 ..^ S d = c T
51 50 fveq1d φ c P d = c T a 0 ..^ S d a = c T a
52 f1ofun T : 0 ..^ S 1-1 onto 0 ..^ S Fun T
53 17 52 syl φ Fun T
54 53 ad2antrr φ c P a 0 ..^ S Fun T
55 simpr φ c P a 0 ..^ S a 0 ..^ S
56 f1odm T : 0 ..^ S 1-1 onto 0 ..^ S dom T = 0 ..^ S
57 17 56 syl φ dom T = 0 ..^ S
58 57 ad2antrr φ c P a 0 ..^ S dom T = 0 ..^ S
59 55 58 eleqtrrd φ c P a 0 ..^ S a dom T
60 fvco Fun T a dom T c T a = c T a
61 54 59 60 syl2anc φ c P a 0 ..^ S c T a = c T a
62 61 adantlr φ c P d = c T a 0 ..^ S c T a = c T a
63 51 62 eqtrd φ c P d = c T a 0 ..^ S d a = c T a
64 63 sumeq2dv φ c P d = c T a 0 ..^ S d a = a 0 ..^ S c T a
65 fveq2 b = T a c b = c T a
66 fzofi 0 ..^ S Fin
67 66 a1i φ c P 0 ..^ S Fin
68 17 adantr φ c P T : 0 ..^ S 1-1 onto 0 ..^ S
69 eqidd φ c P a 0 ..^ S T a = T a
70 3 ad2antrr φ c P b 0 ..^ S A
71 3 adantr φ c P A
72 2 adantr φ c P M
73 24 adantr φ c P S 0
74 23 sselda φ c P c A repr S M
75 71 72 73 74 reprf φ c P c : 0 ..^ S A
76 75 ffvelrnda φ c P b 0 ..^ S c b A
77 70 76 sseldd φ c P b 0 ..^ S c b
78 77 nncnd φ c P b 0 ..^ S c b
79 65 67 68 69 78 fsumf1o φ c P b 0 ..^ S c b = a 0 ..^ S c T a
80 79 adantr φ c P d = c T b 0 ..^ S c b = a 0 ..^ S c T a
81 71 72 73 74 reprsum φ c P b 0 ..^ S c b = M
82 81 adantr φ c P d = c T b 0 ..^ S c b = M
83 64 80 82 3eqtr2d φ c P d = c T a 0 ..^ S d a = M
84 fveq1 c = d c a = d a
85 84 sumeq2sdv c = d a 0 ..^ S c a = a 0 ..^ S d a
86 85 eqeq1d c = d a 0 ..^ S c a = M a 0 ..^ S d a = M
87 86 elrab d c A 0 ..^ S | a 0 ..^ S c a = M d A 0 ..^ S a 0 ..^ S d a = M
88 49 83 87 sylanbrc φ c P d = c T d c A 0 ..^ S | a 0 ..^ S c a = M
89 25 ad2antrr φ c P d = c T A repr S M = c A 0 ..^ S | a 0 ..^ S c a = M
90 88 89 eleqtrrd φ c P d = c T d A repr S M
91 40 fveq1d φ c P d = c T d 0 = c T 0
92 53 ad2antrr φ c P d = c T Fun T
93 16 57 eleqtrrd φ 0 dom T
94 93 ad2antrr φ c P d = c T 0 dom T
95 fvco Fun T 0 dom T c T 0 = c T 0
96 92 94 95 syl2anc φ c P d = c T c T 0 = c T 0
97 11 4 16 7 pmtridfv2 φ T 0 = X
98 97 ad2antrr φ c P d = c T T 0 = X
99 98 fveq2d φ c P d = c T c T 0 = c X
100 simpr φ c P c P
101 100 6 eleqtrdi φ c P c c A repr S M | ¬ c X B
102 rabid c c A repr S M | ¬ c X B c A repr S M ¬ c X B
103 101 102 sylib φ c P c A repr S M ¬ c X B
104 103 simprd φ c P ¬ c X B
105 104 adantr φ c P d = c T ¬ c X B
106 99 105 eqneltrd φ c P d = c T ¬ c T 0 B
107 96 106 eqneltrd φ c P d = c T ¬ c T 0 B
108 91 107 eqneltrd φ c P d = c T ¬ d 0 B
109 90 108 jca φ c P d = c T d A repr S M ¬ d 0 B
110 109 r19.29an φ c P d = c T d A repr S M ¬ d 0 B
111 3 adantr φ d A repr S M A
112 2 adantr φ d A repr S M M
113 24 adantr φ d A repr S M S 0
114 simpr φ d A repr S M d A repr S M
115 111 112 113 114 reprf φ d A repr S M d : 0 ..^ S A
116 f1ocnv T : 0 ..^ S 1-1 onto 0 ..^ S T -1 : 0 ..^ S 1-1 onto 0 ..^ S
117 f1of T -1 : 0 ..^ S 1-1 onto 0 ..^ S T -1 : 0 ..^ S 0 ..^ S
118 17 116 117 3syl φ T -1 : 0 ..^ S 0 ..^ S
119 118 adantr φ d A repr S M T -1 : 0 ..^ S 0 ..^ S
120 fco d : 0 ..^ S A T -1 : 0 ..^ S 0 ..^ S d T -1 : 0 ..^ S A
121 115 119 120 syl2anc φ d A repr S M d T -1 : 0 ..^ S A
122 elmapg A V 0 ..^ S V d T -1 A 0 ..^ S d T -1 : 0 ..^ S A
123 14 11 122 syl2anc φ d T -1 A 0 ..^ S d T -1 : 0 ..^ S A
124 123 adantr φ d A repr S M d T -1 A 0 ..^ S d T -1 : 0 ..^ S A
125 121 124 mpbird φ d A repr S M d T -1 A 0 ..^ S
126 125 adantr φ d A repr S M ¬ d 0 B d T -1 A 0 ..^ S
127 f1ofun T -1 : 0 ..^ S 1-1 onto 0 ..^ S Fun T -1
128 17 116 127 3syl φ Fun T -1
129 128 ad2antrr φ d A repr S M a 0 ..^ S Fun T -1
130 simpr φ a 0 ..^ S a 0 ..^ S
131 f1odm T -1 : 0 ..^ S 1-1 onto 0 ..^ S dom T -1 = 0 ..^ S
132 17 116 131 3syl φ dom T -1 = 0 ..^ S
133 132 adantr φ a 0 ..^ S dom T -1 = 0 ..^ S
134 130 133 eleqtrrd φ a 0 ..^ S a dom T -1
135 134 adantlr φ d A repr S M a 0 ..^ S a dom T -1
136 fvco Fun T -1 a dom T -1 d T -1 a = d T -1 a
137 129 135 136 syl2anc φ d A repr S M a 0 ..^ S d T -1 a = d T -1 a
138 137 sumeq2dv φ d A repr S M a 0 ..^ S d T -1 a = a 0 ..^ S d T -1 a
139 fveq2 b = T -1 a d b = d T -1 a
140 66 a1i φ d A repr S M 0 ..^ S Fin
141 17 116 syl φ T -1 : 0 ..^ S 1-1 onto 0 ..^ S
142 141 adantr φ d A repr S M T -1 : 0 ..^ S 1-1 onto 0 ..^ S
143 eqidd φ d A repr S M a 0 ..^ S T -1 a = T -1 a
144 111 adantr φ d A repr S M b 0 ..^ S A
145 115 ffvelrnda φ d A repr S M b 0 ..^ S d b A
146 144 145 sseldd φ d A repr S M b 0 ..^ S d b
147 146 nncnd φ d A repr S M b 0 ..^ S d b
148 139 140 142 143 147 fsumf1o φ d A repr S M b 0 ..^ S d b = a 0 ..^ S d T -1 a
149 111 112 113 114 reprsum φ d A repr S M b 0 ..^ S d b = M
150 138 148 149 3eqtr2d φ d A repr S M a 0 ..^ S d T -1 a = M
151 150 adantr φ d A repr S M ¬ d 0 B a 0 ..^ S d T -1 a = M
152 fveq1 c = d T -1 c a = d T -1 a
153 152 sumeq2sdv c = d T -1 a 0 ..^ S c a = a 0 ..^ S d T -1 a
154 153 eqeq1d c = d T -1 a 0 ..^ S c a = M a 0 ..^ S d T -1 a = M
155 154 elrab d T -1 c A 0 ..^ S | a 0 ..^ S c a = M d T -1 A 0 ..^ S a 0 ..^ S d T -1 a = M
156 126 151 155 sylanbrc φ d A repr S M ¬ d 0 B d T -1 c A 0 ..^ S | a 0 ..^ S c a = M
157 25 ad2antrr φ d A repr S M ¬ d 0 B A repr S M = c A 0 ..^ S | a 0 ..^ S c a = M
158 156 157 eleqtrrd φ d A repr S M ¬ d 0 B d T -1 A repr S M
159 128 ad2antrr φ d A repr S M ¬ d 0 B Fun T -1
160 4 132 eleqtrrd φ X dom T -1
161 160 ad2antrr φ d A repr S M ¬ d 0 B X dom T -1
162 fvco Fun T -1 X dom T -1 d T -1 X = d T -1 X
163 159 161 162 syl2anc φ d A repr S M ¬ d 0 B d T -1 X = d T -1 X
164 f1ocnvfv T : 0 ..^ S 1-1 onto 0 ..^ S 0 0 ..^ S T 0 = X T -1 X = 0
165 164 imp T : 0 ..^ S 1-1 onto 0 ..^ S 0 0 ..^ S T 0 = X T -1 X = 0
166 17 16 97 165 syl21anc φ T -1 X = 0
167 166 ad2antrr φ d A repr S M ¬ d 0 B T -1 X = 0
168 167 fveq2d φ d A repr S M ¬ d 0 B d T -1 X = d 0
169 simpr φ d A repr S M ¬ d 0 B ¬ d 0 B
170 168 169 eqneltrd φ d A repr S M ¬ d 0 B ¬ d T -1 X B
171 163 170 eqneltrd φ d A repr S M ¬ d 0 B ¬ d T -1 X B
172 fveq1 c = d T -1 c X = d T -1 X
173 172 eleq1d c = d T -1 c X B d T -1 X B
174 173 notbid c = d T -1 ¬ c X B ¬ d T -1 X B
175 174 elrab d T -1 c A repr S M | ¬ c X B d T -1 A repr S M ¬ d T -1 X B
176 158 171 175 sylanbrc φ d A repr S M ¬ d 0 B d T -1 c A repr S M | ¬ c X B
177 176 6 eleqtrrdi φ d A repr S M ¬ d 0 B d T -1 P
178 177 anasss φ d A repr S M ¬ d 0 B d T -1 P
179 simpr φ d A repr S M ¬ d 0 B c = d T -1 c = d T -1
180 179 coeq1d φ d A repr S M ¬ d 0 B c = d T -1 c T = d T -1 T
181 180 eqeq2d φ d A repr S M ¬ d 0 B c = d T -1 d = c T d = d T -1 T
182 f1ococnv1 T : 0 ..^ S 1-1 onto 0 ..^ S T -1 T = I 0 ..^ S
183 17 182 syl φ T -1 T = I 0 ..^ S
184 183 adantr φ d A repr S M ¬ d 0 B T -1 T = I 0 ..^ S
185 184 coeq2d φ d A repr S M ¬ d 0 B d T -1 T = d I 0 ..^ S
186 115 adantrr φ d A repr S M ¬ d 0 B d : 0 ..^ S A
187 fcoi1 d : 0 ..^ S A d I 0 ..^ S = d
188 186 187 syl φ d A repr S M ¬ d 0 B d I 0 ..^ S = d
189 185 188 eqtr2d φ d A repr S M ¬ d 0 B d = d T -1 T
190 coass d T -1 T = d T -1 T
191 189 190 syl6eqr φ d A repr S M ¬ d 0 B d = d T -1 T
192 178 181 191 rspcedvd φ d A repr S M ¬ d 0 B c P d = c T
193 110 192 impbida φ c P d = c T d A repr S M ¬ d 0 B
194 39 193 bitrd φ d c A 0 ..^ S c T P d A repr S M ¬ d 0 B
195 fveq1 c = d c 0 = d 0
196 195 eleq1d c = d c 0 B d 0 B
197 196 notbid c = d ¬ c 0 B ¬ d 0 B
198 197 elrab d c A repr S M | ¬ c 0 B d A repr S M ¬ d 0 B
199 194 198 syl6bbr φ d c A 0 ..^ S c T P d c A repr S M | ¬ c 0 B
200 199 eqrdv φ c A 0 ..^ S c T P = c A repr S M | ¬ c 0 B
201 200 5 syl6eqr φ c A 0 ..^ S c T P = O
202 35 36 201 f1oeq123d φ c A 0 ..^ S c T P : P 1-1 onto c A 0 ..^ S c T P F : P 1-1 onto O
203 32 202 mpbid φ F : P 1-1 onto O