Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Number Theory
Representations of a number as sums of integers
reprsuc
Next ⟩
reprfi
Metamath Proof Explorer
Ascii
Unicode
Theorem
reprsuc
Description:
Express the representations recursively.
(Contributed by
Thierry Arnoux
, 5-Dec-2021)
Ref
Expression
Hypotheses
reprval.a
⊢
φ
→
A
⊆
ℕ
reprval.m
⊢
φ
→
M
∈
ℤ
reprval.s
⊢
φ
→
S
∈
ℕ
0
reprsuc.f
⊢
F
=
c
∈
A
repr
S
M
−
b
⟼
c
∪
S
b
Assertion
reprsuc
⊢
φ
→
A
repr
S
+
1
M
=
⋃
b
∈
A
ran
F
Proof
Step
Hyp
Ref
Expression
1
reprval.a
⊢
φ
→
A
⊆
ℕ
2
reprval.m
⊢
φ
→
M
∈
ℤ
3
reprval.s
⊢
φ
→
S
∈
ℕ
0
4
reprsuc.f
⊢
F
=
c
∈
A
repr
S
M
−
b
⟼
c
∪
S
b
5
1nn0
⊢
1
∈
ℕ
0
6
5
a1i
⊢
φ
→
1
∈
ℕ
0
7
3
6
nn0addcld
⊢
φ
→
S
+
1
∈
ℕ
0
8
1
2
7
reprval
⊢
φ
→
A
repr
S
+
1
M
=
c
∈
A
0
..^
S
+
1
|
∑
a
∈
0
..^
S
+
1
c
a
=
M
9
simplr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
∈
A
0
..^
S
+
1
10
elmapi
⊢
e
∈
A
0
..^
S
+
1
→
e
:
0
..^
S
+
1
⟶
A
11
9
10
syl
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
:
0
..^
S
+
1
⟶
A
12
3
ad2antrr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
S
∈
ℕ
0
13
fzonn0p1
⊢
S
∈
ℕ
0
→
S
∈
0
..^
S
+
1
14
12
13
syl
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
S
∈
0
..^
S
+
1
15
11
14
ffvelcdmd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
S
∈
A
16
simpr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
∧
b
=
e
S
→
b
=
e
S
17
16
oveq2d
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
∧
b
=
e
S
→
M
−
b
=
M
−
e
S
18
17
oveq2d
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
∧
b
=
e
S
→
A
repr
S
M
−
b
=
A
repr
S
M
−
e
S
19
opeq2
⊢
b
=
e
S
→
S
b
=
S
e
S
20
19
sneqd
⊢
b
=
e
S
→
S
b
=
S
e
S
21
20
uneq2d
⊢
b
=
e
S
→
c
∪
S
b
=
c
∪
S
e
S
22
21
eqeq2d
⊢
b
=
e
S
→
e
=
c
∪
S
b
↔
e
=
c
∪
S
e
S
23
22
adantl
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
∧
b
=
e
S
→
e
=
c
∪
S
b
↔
e
=
c
∪
S
e
S
24
18
23
rexeqbidv
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
∧
b
=
e
S
→
∃
c
∈
A
repr
S
M
−
b
e
=
c
∪
S
b
↔
∃
c
∈
A
repr
S
M
−
e
S
e
=
c
∪
S
e
S
25
10
adantl
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
e
:
0
..^
S
+
1
⟶
A
26
3
adantr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
S
∈
ℕ
0
27
fzossfzop1
⊢
S
∈
ℕ
0
→
0
..^
S
⊆
0
..^
S
+
1
28
26
27
syl
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
0
..^
S
⊆
0
..^
S
+
1
29
25
28
fssresd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
e
↾
0
..^
S
:
0
..^
S
⟶
A
30
29
adantr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
↾
0
..^
S
:
0
..^
S
⟶
A
31
nnex
⊢
ℕ
∈
V
32
31
a1i
⊢
φ
→
ℕ
∈
V
33
32
1
ssexd
⊢
φ
→
A
∈
V
34
fzofi
⊢
0
..^
S
∈
Fin
35
34
elexi
⊢
0
..^
S
∈
V
36
elmapg
⊢
A
∈
V
∧
0
..^
S
∈
V
→
e
↾
0
..^
S
∈
A
0
..^
S
↔
e
↾
0
..^
S
:
0
..^
S
⟶
A
37
33
35
36
sylancl
⊢
φ
→
e
↾
0
..^
S
∈
A
0
..^
S
↔
e
↾
0
..^
S
:
0
..^
S
⟶
A
38
37
ad2antrr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
↾
0
..^
S
∈
A
0
..^
S
↔
e
↾
0
..^
S
:
0
..^
S
⟶
A
39
30
38
mpbird
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
↾
0
..^
S
∈
A
0
..^
S
40
34
a1i
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
0
..^
S
∈
Fin
41
nnsscn
⊢
ℕ
⊆
ℂ
42
41
a1i
⊢
φ
→
ℕ
⊆
ℂ
43
1
42
sstrd
⊢
φ
→
A
⊆
ℂ
44
43
ad2antrr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
a
∈
0
..^
S
→
A
⊆
ℂ
45
29
ffvelcdmda
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
a
∈
0
..^
S
→
e
↾
0
..^
S
a
∈
A
46
44
45
sseldd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
a
∈
0
..^
S
→
e
↾
0
..^
S
a
∈
ℂ
47
40
46
fsumcl
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
∈
ℂ
48
47
adantr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
∈
ℂ
49
43
adantr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
A
⊆
ℂ
50
26
13
syl
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
S
∈
0
..^
S
+
1
51
25
50
ffvelcdmd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
e
S
∈
A
52
49
51
sseldd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
e
S
∈
ℂ
53
52
adantr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
S
∈
ℂ
54
48
53
pncand
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
+
e
S
-
e
S
=
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
55
nfv
⊢
Ⅎ
a
φ
∧
e
∈
A
0
..^
S
+
1
56
nfcv
⊢
Ⅎ
_
a
e
S
57
fzonel
⊢
¬
S
∈
0
..^
S
58
57
a1i
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
¬
S
∈
0
..^
S
59
25
adantr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
a
∈
0
..^
S
→
e
:
0
..^
S
+
1
⟶
A
60
28
sselda
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
a
∈
0
..^
S
→
a
∈
0
..^
S
+
1
61
59
60
ffvelcdmd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
a
∈
0
..^
S
→
e
a
∈
A
62
44
61
sseldd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
a
∈
0
..^
S
→
e
a
∈
ℂ
63
fveq2
⊢
a
=
S
→
e
a
=
e
S
64
55
56
40
26
58
62
63
52
fsumsplitsn
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
∑
a
∈
0
..^
S
∪
S
e
a
=
∑
a
∈
0
..^
S
e
a
+
e
S
65
fzosplitsn
⊢
S
∈
ℤ
≥
0
→
0
..^
S
+
1
=
0
..^
S
∪
S
66
nn0uz
⊢
ℕ
0
=
ℤ
≥
0
67
65
66
eleq2s
⊢
S
∈
ℕ
0
→
0
..^
S
+
1
=
0
..^
S
∪
S
68
26
67
syl
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
0
..^
S
+
1
=
0
..^
S
∪
S
69
68
sumeq1d
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
∑
a
∈
0
..^
S
+
1
e
a
=
∑
a
∈
0
..^
S
∪
S
e
a
70
simpr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
a
∈
0
..^
S
→
a
∈
0
..^
S
71
70
fvresd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
a
∈
0
..^
S
→
e
↾
0
..^
S
a
=
e
a
72
71
sumeq2dv
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
=
∑
a
∈
0
..^
S
e
a
73
72
oveq1d
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
+
e
S
=
∑
a
∈
0
..^
S
e
a
+
e
S
74
64
69
73
3eqtr4d
⊢
φ
∧
e
∈
A
0
..^
S
+
1
→
∑
a
∈
0
..^
S
+
1
e
a
=
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
+
e
S
75
74
adantr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
∑
a
∈
0
..^
S
+
1
e
a
=
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
+
e
S
76
simpr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
∑
a
∈
0
..^
S
+
1
e
a
=
M
77
75
76
eqtr3d
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
+
e
S
=
M
78
77
oveq1d
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
+
e
S
-
e
S
=
M
−
e
S
79
54
78
eqtr3d
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
=
M
−
e
S
80
39
79
jca
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
↾
0
..^
S
∈
A
0
..^
S
∧
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
=
M
−
e
S
81
fveq1
⊢
d
=
e
↾
0
..^
S
→
d
a
=
e
↾
0
..^
S
a
82
81
sumeq2sdv
⊢
d
=
e
↾
0
..^
S
→
∑
a
∈
0
..^
S
d
a
=
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
83
82
eqeq1d
⊢
d
=
e
↾
0
..^
S
→
∑
a
∈
0
..^
S
d
a
=
M
−
e
S
↔
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
=
M
−
e
S
84
83
elrab
⊢
e
↾
0
..^
S
∈
d
∈
A
0
..^
S
|
∑
a
∈
0
..^
S
d
a
=
M
−
e
S
↔
e
↾
0
..^
S
∈
A
0
..^
S
∧
∑
a
∈
0
..^
S
e
↾
0
..^
S
a
=
M
−
e
S
85
80
84
sylibr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
↾
0
..^
S
∈
d
∈
A
0
..^
S
|
∑
a
∈
0
..^
S
d
a
=
M
−
e
S
86
1
ad2antrr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
A
⊆
ℕ
87
2
ad2antrr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
M
∈
ℤ
88
nnssz
⊢
ℕ
⊆
ℤ
89
1
88
sstrdi
⊢
φ
→
A
⊆
ℤ
90
89
ad2antrr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
A
⊆
ℤ
91
90
15
sseldd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
S
∈
ℤ
92
87
91
zsubcld
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
M
−
e
S
∈
ℤ
93
86
92
12
reprval
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
A
repr
S
M
−
e
S
=
d
∈
A
0
..^
S
|
∑
a
∈
0
..^
S
d
a
=
M
−
e
S
94
85
93
eleqtrrd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
↾
0
..^
S
∈
A
repr
S
M
−
e
S
95
simpr
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
∧
c
=
e
↾
0
..^
S
→
c
=
e
↾
0
..^
S
96
95
uneq1d
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
∧
c
=
e
↾
0
..^
S
→
c
∪
S
e
S
=
e
↾
0
..^
S
∪
S
e
S
97
96
eqeq2d
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
∧
c
=
e
↾
0
..^
S
→
e
=
c
∪
S
e
S
↔
e
=
e
↾
0
..^
S
∪
S
e
S
98
11
ffnd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
Fn
0
..^
S
+
1
99
fnsnsplit
⊢
e
Fn
0
..^
S
+
1
∧
S
∈
0
..^
S
+
1
→
e
=
e
↾
0
..^
S
+
1
∖
S
∪
S
e
S
100
98
14
99
syl2anc
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
=
e
↾
0
..^
S
+
1
∖
S
∪
S
e
S
101
12
66
eleqtrdi
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
S
∈
ℤ
≥
0
102
fzodif2
⊢
S
∈
ℤ
≥
0
→
0
..^
S
+
1
∖
S
=
0
..^
S
103
101
102
syl
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
0
..^
S
+
1
∖
S
=
0
..^
S
104
103
reseq2d
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
↾
0
..^
S
+
1
∖
S
=
e
↾
0
..^
S
105
104
uneq1d
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
↾
0
..^
S
+
1
∖
S
∪
S
e
S
=
e
↾
0
..^
S
∪
S
e
S
106
100
105
eqtrd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
e
=
e
↾
0
..^
S
∪
S
e
S
107
94
97
106
rspcedvd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
∃
c
∈
A
repr
S
M
−
e
S
e
=
c
∪
S
e
S
108
15
24
107
rspcedvd
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
∃
b
∈
A
∃
c
∈
A
repr
S
M
−
b
e
=
c
∪
S
b
109
108
anasss
⊢
φ
∧
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
→
∃
b
∈
A
∃
c
∈
A
repr
S
M
−
b
e
=
c
∪
S
b
110
simpr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
e
=
c
∪
S
b
111
1
adantr
⊢
φ
∧
b
∈
A
→
A
⊆
ℕ
112
111
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
A
⊆
ℕ
113
2
adantr
⊢
φ
∧
b
∈
A
→
M
∈
ℤ
114
89
sselda
⊢
φ
∧
b
∈
A
→
b
∈
ℤ
115
113
114
zsubcld
⊢
φ
∧
b
∈
A
→
M
−
b
∈
ℤ
116
115
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
M
−
b
∈
ℤ
117
3
adantr
⊢
φ
∧
b
∈
A
→
S
∈
ℕ
0
118
117
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
S
∈
ℕ
0
119
simpr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
c
∈
A
repr
S
M
−
b
120
112
116
118
119
reprf
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
c
:
0
..^
S
⟶
A
121
simplr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
b
∈
A
122
118
121
fsnd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
S
b
:
S
⟶
A
123
fzodisjsn
⊢
0
..^
S
∩
S
=
∅
124
123
a1i
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
0
..^
S
∩
S
=
∅
125
120
122
124
fun2d
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
c
∪
S
b
:
0
..^
S
∪
S
⟶
A
126
118
67
syl
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
0
..^
S
+
1
=
0
..^
S
∪
S
127
126
feq2d
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
c
∪
S
b
:
0
..^
S
+
1
⟶
A
↔
c
∪
S
b
:
0
..^
S
∪
S
⟶
A
128
125
127
mpbird
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
c
∪
S
b
:
0
..^
S
+
1
⟶
A
129
ovex
⊢
0
..^
S
+
1
∈
V
130
elmapg
⊢
A
∈
V
∧
0
..^
S
+
1
∈
V
→
c
∪
S
b
∈
A
0
..^
S
+
1
↔
c
∪
S
b
:
0
..^
S
+
1
⟶
A
131
33
129
130
sylancl
⊢
φ
→
c
∪
S
b
∈
A
0
..^
S
+
1
↔
c
∪
S
b
:
0
..^
S
+
1
⟶
A
132
131
ad2antrr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
c
∪
S
b
∈
A
0
..^
S
+
1
↔
c
∪
S
b
:
0
..^
S
+
1
⟶
A
133
128
132
mpbird
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
c
∪
S
b
∈
A
0
..^
S
+
1
134
133
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
c
∪
S
b
∈
A
0
..^
S
+
1
135
110
134
eqeltrd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
e
∈
A
0
..^
S
+
1
136
126
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
0
..^
S
+
1
=
0
..^
S
∪
S
137
136
sumeq1d
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
∑
a
∈
0
..^
S
+
1
e
a
=
∑
a
∈
0
..^
S
∪
S
e
a
138
nfv
⊢
Ⅎ
a
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
139
34
a1i
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
0
..^
S
∈
Fin
140
118
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
S
∈
ℕ
0
141
57
a1i
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
¬
S
∈
0
..^
S
142
43
ad4antr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
A
⊆
ℂ
143
128
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
c
∪
S
b
:
0
..^
S
+
1
⟶
A
144
110
feq1d
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
e
:
0
..^
S
+
1
⟶
A
↔
c
∪
S
b
:
0
..^
S
+
1
⟶
A
145
143
144
mpbird
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
e
:
0
..^
S
+
1
⟶
A
146
145
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
e
:
0
..^
S
+
1
⟶
A
147
simpr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
a
∈
0
..^
S
148
elun1
⊢
a
∈
0
..^
S
→
a
∈
0
..^
S
∪
S
149
147
148
syl
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
a
∈
0
..^
S
∪
S
150
126
ad2antrr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
0
..^
S
+
1
=
0
..^
S
∪
S
151
149
150
eleqtrrd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
a
∈
0
..^
S
+
1
152
146
151
ffvelcdmd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
e
a
∈
A
153
142
152
sseldd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
e
a
∈
ℂ
154
43
ad3antrrr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
A
⊆
ℂ
155
140
13
syl
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
S
∈
0
..^
S
+
1
156
145
155
ffvelcdmd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
e
S
∈
A
157
154
156
sseldd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
e
S
∈
ℂ
158
138
56
139
140
141
153
63
157
fsumsplitsn
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
∑
a
∈
0
..^
S
∪
S
e
a
=
∑
a
∈
0
..^
S
e
a
+
e
S
159
simplr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
e
=
c
∪
S
b
160
159
fveq1d
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
e
a
=
c
∪
S
b
a
161
120
ffnd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
c
Fn
0
..^
S
162
161
ad2antrr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
c
Fn
0
..^
S
163
122
ffnd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
→
S
b
Fn
S
164
163
ad2antrr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
S
b
Fn
S
165
123
a1i
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
0
..^
S
∩
S
=
∅
166
fvun1
⊢
c
Fn
0
..^
S
∧
S
b
Fn
S
∧
0
..^
S
∩
S
=
∅
∧
a
∈
0
..^
S
→
c
∪
S
b
a
=
c
a
167
162
164
165
147
166
syl112anc
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
c
∪
S
b
a
=
c
a
168
160
167
eqtrd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
∧
a
∈
0
..^
S
→
e
a
=
c
a
169
168
ralrimiva
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
∀
a
∈
0
..^
S
e
a
=
c
a
170
169
sumeq2d
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
∑
a
∈
0
..^
S
e
a
=
∑
a
∈
0
..^
S
c
a
171
112
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
A
⊆
ℕ
172
116
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
M
−
b
∈
ℤ
173
119
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
c
∈
A
repr
S
M
−
b
174
171
172
140
173
reprsum
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
∑
a
∈
0
..^
S
c
a
=
M
−
b
175
170
174
eqtrd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
∑
a
∈
0
..^
S
e
a
=
M
−
b
176
110
fveq1d
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
e
S
=
c
∪
S
b
S
177
161
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
c
Fn
0
..^
S
178
163
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
S
b
Fn
S
179
123
a1i
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
0
..^
S
∩
S
=
∅
180
snidg
⊢
S
∈
ℕ
0
→
S
∈
S
181
140
180
syl
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
S
∈
S
182
fvun2
⊢
c
Fn
0
..^
S
∧
S
b
Fn
S
∧
0
..^
S
∩
S
=
∅
∧
S
∈
S
→
c
∪
S
b
S
=
S
b
S
183
177
178
179
181
182
syl112anc
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
c
∪
S
b
S
=
S
b
S
184
121
adantr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
b
∈
A
185
fvsng
⊢
S
∈
ℕ
0
∧
b
∈
A
→
S
b
S
=
b
186
140
184
185
syl2anc
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
S
b
S
=
b
187
176
183
186
3eqtrd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
e
S
=
b
188
175
187
oveq12d
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
∑
a
∈
0
..^
S
e
a
+
e
S
=
M
-
b
+
b
189
zsscn
⊢
ℤ
⊆
ℂ
190
113
ad2antrr
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
M
∈
ℤ
191
189
190
sselid
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
M
∈
ℂ
192
187
157
eqeltrrd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
b
∈
ℂ
193
191
192
npcand
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
M
-
b
+
b
=
M
194
188
193
eqtrd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
∑
a
∈
0
..^
S
e
a
+
e
S
=
M
195
137
158
194
3eqtrd
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
∑
a
∈
0
..^
S
+
1
e
a
=
M
196
135
195
jca
⊢
φ
∧
b
∈
A
∧
c
∈
A
repr
S
M
−
b
∧
e
=
c
∪
S
b
→
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
197
196
r19.29ffa
⊢
φ
∧
∃
b
∈
A
∃
c
∈
A
repr
S
M
−
b
e
=
c
∪
S
b
→
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
198
109
197
impbida
⊢
φ
→
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
↔
∃
b
∈
A
∃
c
∈
A
repr
S
M
−
b
e
=
c
∪
S
b
199
vex
⊢
c
∈
V
200
snex
⊢
S
b
∈
V
201
199
200
unex
⊢
c
∪
S
b
∈
V
202
4
201
elrnmpti
⊢
e
∈
ran
F
↔
∃
c
∈
A
repr
S
M
−
b
e
=
c
∪
S
b
203
202
rexbii
⊢
∃
b
∈
A
e
∈
ran
F
↔
∃
b
∈
A
∃
c
∈
A
repr
S
M
−
b
e
=
c
∪
S
b
204
198
203
bitr4di
⊢
φ
→
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
↔
∃
b
∈
A
e
∈
ran
F
205
fveq1
⊢
c
=
e
→
c
a
=
e
a
206
205
sumeq2sdv
⊢
c
=
e
→
∑
a
∈
0
..^
S
+
1
c
a
=
∑
a
∈
0
..^
S
+
1
e
a
207
206
eqeq1d
⊢
c
=
e
→
∑
a
∈
0
..^
S
+
1
c
a
=
M
↔
∑
a
∈
0
..^
S
+
1
e
a
=
M
208
207
cbvrabv
⊢
c
∈
A
0
..^
S
+
1
|
∑
a
∈
0
..^
S
+
1
c
a
=
M
=
e
∈
A
0
..^
S
+
1
|
∑
a
∈
0
..^
S
+
1
e
a
=
M
209
208
reqabi
⊢
e
∈
c
∈
A
0
..^
S
+
1
|
∑
a
∈
0
..^
S
+
1
c
a
=
M
↔
e
∈
A
0
..^
S
+
1
∧
∑
a
∈
0
..^
S
+
1
e
a
=
M
210
eliun
⊢
e
∈
⋃
b
∈
A
ran
F
↔
∃
b
∈
A
e
∈
ran
F
211
204
209
210
3bitr4g
⊢
φ
→
e
∈
c
∈
A
0
..^
S
+
1
|
∑
a
∈
0
..^
S
+
1
c
a
=
M
↔
e
∈
⋃
b
∈
A
ran
F
212
211
eqrdv
⊢
φ
→
c
∈
A
0
..^
S
+
1
|
∑
a
∈
0
..^
S
+
1
c
a
=
M
=
⋃
b
∈
A
ran
F
213
8
212
eqtrd
⊢
φ
→
A
repr
S
+
1
M
=
⋃
b
∈
A
ran
F