| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprval.a |
|
| 2 |
|
reprval.m |
|
| 3 |
|
reprval.s |
|
| 4 |
|
reprsuc.f |
|
| 5 |
|
1nn0 |
|
| 6 |
5
|
a1i |
|
| 7 |
3 6
|
nn0addcld |
|
| 8 |
1 2 7
|
reprval |
|
| 9 |
|
simplr |
|
| 10 |
|
elmapi |
|
| 11 |
9 10
|
syl |
|
| 12 |
3
|
ad2antrr |
|
| 13 |
|
fzonn0p1 |
|
| 14 |
12 13
|
syl |
|
| 15 |
11 14
|
ffvelcdmd |
|
| 16 |
|
simpr |
|
| 17 |
16
|
oveq2d |
|
| 18 |
17
|
oveq2d |
|
| 19 |
|
opeq2 |
|
| 20 |
19
|
sneqd |
|
| 21 |
20
|
uneq2d |
|
| 22 |
21
|
eqeq2d |
|
| 23 |
22
|
adantl |
|
| 24 |
18 23
|
rexeqbidv |
|
| 25 |
10
|
adantl |
|
| 26 |
3
|
adantr |
|
| 27 |
|
fzossfzop1 |
|
| 28 |
26 27
|
syl |
|
| 29 |
25 28
|
fssresd |
|
| 30 |
29
|
adantr |
|
| 31 |
|
nnex |
|
| 32 |
31
|
a1i |
|
| 33 |
32 1
|
ssexd |
|
| 34 |
|
fzofi |
|
| 35 |
34
|
elexi |
|
| 36 |
|
elmapg |
|
| 37 |
33 35 36
|
sylancl |
|
| 38 |
37
|
ad2antrr |
|
| 39 |
30 38
|
mpbird |
|
| 40 |
34
|
a1i |
|
| 41 |
|
nnsscn |
|
| 42 |
41
|
a1i |
|
| 43 |
1 42
|
sstrd |
|
| 44 |
43
|
ad2antrr |
|
| 45 |
29
|
ffvelcdmda |
|
| 46 |
44 45
|
sseldd |
|
| 47 |
40 46
|
fsumcl |
|
| 48 |
47
|
adantr |
|
| 49 |
43
|
adantr |
|
| 50 |
26 13
|
syl |
|
| 51 |
25 50
|
ffvelcdmd |
|
| 52 |
49 51
|
sseldd |
|
| 53 |
52
|
adantr |
|
| 54 |
48 53
|
pncand |
|
| 55 |
|
nfv |
|
| 56 |
|
nfcv |
|
| 57 |
|
fzonel |
|
| 58 |
57
|
a1i |
|
| 59 |
25
|
adantr |
|
| 60 |
28
|
sselda |
|
| 61 |
59 60
|
ffvelcdmd |
|
| 62 |
44 61
|
sseldd |
|
| 63 |
|
fveq2 |
|
| 64 |
55 56 40 26 58 62 63 52
|
fsumsplitsn |
|
| 65 |
|
fzosplitsn |
|
| 66 |
|
nn0uz |
|
| 67 |
65 66
|
eleq2s |
|
| 68 |
26 67
|
syl |
|
| 69 |
68
|
sumeq1d |
|
| 70 |
|
simpr |
|
| 71 |
70
|
fvresd |
|
| 72 |
71
|
sumeq2dv |
|
| 73 |
72
|
oveq1d |
|
| 74 |
64 69 73
|
3eqtr4d |
|
| 75 |
74
|
adantr |
|
| 76 |
|
simpr |
|
| 77 |
75 76
|
eqtr3d |
|
| 78 |
77
|
oveq1d |
|
| 79 |
54 78
|
eqtr3d |
|
| 80 |
39 79
|
jca |
|
| 81 |
|
fveq1 |
|
| 82 |
81
|
sumeq2sdv |
|
| 83 |
82
|
eqeq1d |
|
| 84 |
83
|
elrab |
|
| 85 |
80 84
|
sylibr |
|
| 86 |
1
|
ad2antrr |
|
| 87 |
2
|
ad2antrr |
|
| 88 |
|
nnssz |
|
| 89 |
1 88
|
sstrdi |
|
| 90 |
89
|
ad2antrr |
|
| 91 |
90 15
|
sseldd |
|
| 92 |
87 91
|
zsubcld |
|
| 93 |
86 92 12
|
reprval |
|
| 94 |
85 93
|
eleqtrrd |
|
| 95 |
|
simpr |
|
| 96 |
95
|
uneq1d |
|
| 97 |
96
|
eqeq2d |
|
| 98 |
11
|
ffnd |
|
| 99 |
|
fnsnsplit |
|
| 100 |
98 14 99
|
syl2anc |
|
| 101 |
12 66
|
eleqtrdi |
|
| 102 |
|
fzodif2 |
|
| 103 |
101 102
|
syl |
|
| 104 |
103
|
reseq2d |
|
| 105 |
104
|
uneq1d |
|
| 106 |
100 105
|
eqtrd |
|
| 107 |
94 97 106
|
rspcedvd |
|
| 108 |
15 24 107
|
rspcedvd |
|
| 109 |
108
|
anasss |
|
| 110 |
|
simpr |
|
| 111 |
1
|
adantr |
|
| 112 |
111
|
adantr |
|
| 113 |
2
|
adantr |
|
| 114 |
89
|
sselda |
|
| 115 |
113 114
|
zsubcld |
|
| 116 |
115
|
adantr |
|
| 117 |
3
|
adantr |
|
| 118 |
117
|
adantr |
|
| 119 |
|
simpr |
|
| 120 |
112 116 118 119
|
reprf |
|
| 121 |
|
simplr |
|
| 122 |
118 121
|
fsnd |
|
| 123 |
|
fzodisjsn |
|
| 124 |
123
|
a1i |
|
| 125 |
120 122 124
|
fun2d |
|
| 126 |
118 67
|
syl |
|
| 127 |
126
|
feq2d |
|
| 128 |
125 127
|
mpbird |
|
| 129 |
|
ovex |
|
| 130 |
|
elmapg |
|
| 131 |
33 129 130
|
sylancl |
|
| 132 |
131
|
ad2antrr |
|
| 133 |
128 132
|
mpbird |
|
| 134 |
133
|
adantr |
|
| 135 |
110 134
|
eqeltrd |
|
| 136 |
126
|
adantr |
|
| 137 |
136
|
sumeq1d |
|
| 138 |
|
nfv |
|
| 139 |
34
|
a1i |
|
| 140 |
118
|
adantr |
|
| 141 |
57
|
a1i |
|
| 142 |
43
|
ad4antr |
|
| 143 |
128
|
adantr |
|
| 144 |
110
|
feq1d |
|
| 145 |
143 144
|
mpbird |
|
| 146 |
145
|
adantr |
|
| 147 |
|
simpr |
|
| 148 |
|
elun1 |
|
| 149 |
147 148
|
syl |
|
| 150 |
126
|
ad2antrr |
|
| 151 |
149 150
|
eleqtrrd |
|
| 152 |
146 151
|
ffvelcdmd |
|
| 153 |
142 152
|
sseldd |
|
| 154 |
43
|
ad3antrrr |
|
| 155 |
140 13
|
syl |
|
| 156 |
145 155
|
ffvelcdmd |
|
| 157 |
154 156
|
sseldd |
|
| 158 |
138 56 139 140 141 153 63 157
|
fsumsplitsn |
|
| 159 |
|
simplr |
|
| 160 |
159
|
fveq1d |
|
| 161 |
120
|
ffnd |
|
| 162 |
161
|
ad2antrr |
|
| 163 |
122
|
ffnd |
|
| 164 |
163
|
ad2antrr |
|
| 165 |
123
|
a1i |
|
| 166 |
|
fvun1 |
|
| 167 |
162 164 165 147 166
|
syl112anc |
|
| 168 |
160 167
|
eqtrd |
|
| 169 |
168
|
ralrimiva |
|
| 170 |
169
|
sumeq2d |
|
| 171 |
112
|
adantr |
|
| 172 |
116
|
adantr |
|
| 173 |
119
|
adantr |
|
| 174 |
171 172 140 173
|
reprsum |
|
| 175 |
170 174
|
eqtrd |
|
| 176 |
110
|
fveq1d |
|
| 177 |
161
|
adantr |
|
| 178 |
163
|
adantr |
|
| 179 |
123
|
a1i |
|
| 180 |
|
snidg |
|
| 181 |
140 180
|
syl |
|
| 182 |
|
fvun2 |
|
| 183 |
177 178 179 181 182
|
syl112anc |
|
| 184 |
121
|
adantr |
|
| 185 |
|
fvsng |
|
| 186 |
140 184 185
|
syl2anc |
|
| 187 |
176 183 186
|
3eqtrd |
|
| 188 |
175 187
|
oveq12d |
|
| 189 |
|
zsscn |
|
| 190 |
113
|
ad2antrr |
|
| 191 |
189 190
|
sselid |
|
| 192 |
187 157
|
eqeltrrd |
|
| 193 |
191 192
|
npcand |
|
| 194 |
188 193
|
eqtrd |
|
| 195 |
137 158 194
|
3eqtrd |
|
| 196 |
135 195
|
jca |
|
| 197 |
196
|
r19.29ffa |
|
| 198 |
109 197
|
impbida |
|
| 199 |
|
vex |
|
| 200 |
|
snex |
|
| 201 |
199 200
|
unex |
|
| 202 |
4 201
|
elrnmpti |
|
| 203 |
202
|
rexbii |
|
| 204 |
198 203
|
bitr4di |
|
| 205 |
|
fveq1 |
|
| 206 |
205
|
sumeq2sdv |
|
| 207 |
206
|
eqeq1d |
|
| 208 |
207
|
cbvrabv |
|
| 209 |
208
|
reqabi |
|
| 210 |
|
eliun |
|
| 211 |
204 209 210
|
3bitr4g |
|
| 212 |
211
|
eqrdv |
|
| 213 |
8 212
|
eqtrd |
|