Step |
Hyp |
Ref |
Expression |
1 |
|
sge0reuz.k |
|
2 |
|
sge0reuz.m |
|
3 |
|
sge0reuz.z |
|
4 |
|
sge0reuz.b |
|
5 |
3
|
a1i |
|
6 |
|
fvex |
|
7 |
5 6
|
eqeltrdi |
|
8 |
1 7 4
|
sge0revalmpt |
|
9 |
|
nfv |
|
10 |
|
eqid |
|
11 |
|
nfv |
|
12 |
1 11
|
nfan |
|
13 |
|
elinel2 |
|
14 |
13
|
adantl |
|
15 |
|
rge0ssre |
|
16 |
|
simpll |
|
17 |
|
elpwinss |
|
18 |
17
|
adantr |
|
19 |
|
simpr |
|
20 |
18 19
|
sseldd |
|
21 |
20
|
adantll |
|
22 |
16 21 4
|
syl2anc |
|
23 |
15 22
|
sselid |
|
24 |
12 14 23
|
fsumreclf |
|
25 |
24
|
rexrd |
|
26 |
9 10 25
|
rnmptssd |
|
27 |
|
supxrcl |
|
28 |
26 27
|
syl |
|
29 |
|
nfv |
|
30 |
|
eqid |
|
31 |
|
nfv |
|
32 |
1 31
|
nfan |
|
33 |
|
fzfid |
|
34 |
|
elfzuz |
|
35 |
34 3
|
eleqtrrdi |
|
36 |
35
|
adantl |
|
37 |
15 4
|
sselid |
|
38 |
36 37
|
syldan |
|
39 |
38
|
adantlr |
|
40 |
32 33 39
|
fsumreclf |
|
41 |
40
|
rexrd |
|
42 |
29 30 41
|
rnmptssd |
|
43 |
|
supxrcl |
|
44 |
42 43
|
syl |
|
45 |
|
vex |
|
46 |
10
|
elrnmpt |
|
47 |
45 46
|
ax-mp |
|
48 |
47
|
biimpi |
|
49 |
48
|
adantl |
|
50 |
2
|
3ad2ant1 |
|
51 |
17
|
3ad2ant2 |
|
52 |
14
|
3adant3 |
|
53 |
50 3 51 52
|
uzfissfz |
|
54 |
|
nfv |
|
55 |
|
nfmpt1 |
|
56 |
55
|
nfrn |
|
57 |
|
nfv |
|
58 |
56 57
|
nfrex |
|
59 |
|
id |
|
60 |
|
sumex |
|
61 |
60
|
a1i |
|
62 |
30
|
elrnmpt1 |
|
63 |
59 61 62
|
syl2anc |
|
64 |
63
|
3ad2ant2 |
|
65 |
|
simplr |
|
66 |
|
nfcv |
|
67 |
|
nfcv |
|
68 |
67
|
nfsum1 |
|
69 |
66 68
|
nfeq |
|
70 |
1 69
|
nfan |
|
71 |
|
nfv |
|
72 |
70 71
|
nfan |
|
73 |
|
fzfid |
|
74 |
38
|
ad4ant14 |
|
75 |
|
simplll |
|
76 |
35
|
adantl |
|
77 |
|
0xr |
|
78 |
77
|
a1i |
|
79 |
|
pnfxr |
|
80 |
79
|
a1i |
|
81 |
|
icogelb |
|
82 |
78 80 4 81
|
syl3anc |
|
83 |
75 76 82
|
syl2anc |
|
84 |
|
simpr |
|
85 |
72 73 74 83 84
|
fsumlessf |
|
86 |
65 85
|
eqbrtrd |
|
87 |
86
|
3adant2 |
|
88 |
|
breq2 |
|
89 |
88
|
rspcev |
|
90 |
64 87 89
|
syl2anc |
|
91 |
90
|
3exp |
|
92 |
91
|
3adant2 |
|
93 |
54 58 92
|
rexlimd |
|
94 |
53 93
|
mpd |
|
95 |
94
|
3exp |
|
96 |
95
|
rexlimdv |
|
97 |
96
|
imp |
|
98 |
49 97
|
syldan |
|
99 |
26 42 98
|
suplesup2 |
|
100 |
30
|
elrnmpt |
|
101 |
45 100
|
ax-mp |
|
102 |
101
|
biimpi |
|
103 |
102
|
adantl |
|
104 |
35
|
ssriv |
|
105 |
|
ovex |
|
106 |
105
|
elpw |
|
107 |
104 106
|
mpbir |
|
108 |
|
fzfi |
|
109 |
107 108
|
elini |
|
110 |
109
|
a1i |
|
111 |
|
id |
|
112 |
|
sumeq1 |
|
113 |
112
|
rspceeqv |
|
114 |
110 111 113
|
syl2anc |
|
115 |
45
|
a1i |
|
116 |
10 114 115
|
elrnmptd |
|
117 |
116
|
2a1i |
|
118 |
117
|
rexlimdv |
|
119 |
118
|
adantr |
|
120 |
103 119
|
mpd |
|
121 |
120
|
ralrimiva |
|
122 |
|
dfss3 |
|
123 |
121 122
|
sylibr |
|
124 |
|
supxrss |
|
125 |
123 26 124
|
syl2anc |
|
126 |
28 44 99 125
|
xrletrid |
|
127 |
8 126
|
eqtrd |
|