Metamath Proof Explorer


Theorem sitgclg

Description: Closure of the Bochner integral on simple functions, generic version. See sitgclbn for the version for Banach spaces. (Contributed by Thierry Arnoux, 24-Feb-2018) (Proof shortened by AV, 12-Dec-2019)

Ref Expression
Hypotheses sitgval.b B=BaseW
sitgval.j J=TopOpenW
sitgval.s S=𝛔J
sitgval.0 0˙=0W
sitgval.x ·˙=W
sitgval.h H=ℝHomScalarW
sitgval.1 φWV
sitgval.2 φMranmeasures
sibfmbl.1 φFMW
sitgclg.g G=ScalarW
sitgclg.d D=distGBaseG×BaseG
sitgclg.1 φWTopSp
sitgclg.2 φWCMnd
sitgclg.3 φScalarWℝExt
sitgclg.4 φmH0+∞xBm·˙xB
Assertion sitgclg φWFdMB

Proof

Step Hyp Ref Expression
1 sitgval.b B=BaseW
2 sitgval.j J=TopOpenW
3 sitgval.s S=𝛔J
4 sitgval.0 0˙=0W
5 sitgval.x ·˙=W
6 sitgval.h H=ℝHomScalarW
7 sitgval.1 φWV
8 sitgval.2 φMranmeasures
9 sibfmbl.1 φFMW
10 sitgclg.g G=ScalarW
11 sitgclg.d D=distGBaseG×BaseG
12 sitgclg.1 φWTopSp
13 sitgclg.2 φWCMnd
14 sitgclg.3 φScalarWℝExt
15 sitgclg.4 φmH0+∞xBm·˙xB
16 1 2 3 4 5 6 7 8 9 sitgfval φWFdM=WxranF0˙HMF-1x·˙x
17 rnexg FMWranFV
18 difexg ranFVranF0˙V
19 9 17 18 3syl φranF0˙V
20 simpl φxranF0˙φ
21 1 2 3 4 5 6 7 8 9 sibfima φxranF0˙MF-1x0+∞
22 10 fveq2i distG=distScalarW
23 10 fveq2i BaseG=BaseScalarW
24 23 23 xpeq12i BaseG×BaseG=BaseScalarW×BaseScalarW
25 22 24 reseq12i distGBaseG×BaseG=distScalarWBaseScalarW×BaseScalarW
26 11 25 eqtri D=distScalarWBaseScalarW×BaseScalarW
27 eqid topGenran.=topGenran.
28 eqid BaseScalarW=BaseScalarW
29 10 fveq2i TopOpenG=TopOpenScalarW
30 10 fveq2i ℤModG=ℤModScalarW
31 10 14 eqeltrid φGℝExt
32 rrextdrg GℝExtGDivRing
33 31 32 syl φGDivRing
34 10 33 eqeltrrid φScalarWDivRing
35 rrextnrg GℝExtGNrmRing
36 31 35 syl φGNrmRing
37 10 36 eqeltrrid φScalarWNrmRing
38 eqid ℤModG=ℤModG
39 38 rrextnlm GℝExtℤModGNrmMod
40 31 39 syl φℤModGNrmMod
41 10 fveq2i chrG=chrScalarW
42 rrextchr GℝExtchrG=0
43 31 42 syl φchrG=0
44 41 43 eqtr3id φchrScalarW=0
45 rrextcusp GℝExtGCUnifSp
46 31 45 syl φGCUnifSp
47 10 46 eqeltrrid φScalarWCUnifSp
48 10 fveq2i UnifStG=UnifStScalarW
49 eqid BaseG=BaseG
50 49 11 rrextust GℝExtUnifStG=metUnifD
51 31 50 syl φUnifStG=metUnifD
52 48 51 eqtr3id φUnifStScalarW=metUnifD
53 26 27 28 29 30 34 37 40 44 47 52 rrhf φℝHomScalarW:BaseScalarW
54 6 feq1i H:BaseScalarWℝHomScalarW:BaseScalarW
55 53 54 sylibr φH:BaseScalarW
56 55 ffund φFunH
57 rge0ssre 0+∞
58 55 fdmd φdomH=
59 57 58 sseqtrrid φ0+∞domH
60 funfvima2 FunH0+∞domHMF-1x0+∞HMF-1xH0+∞
61 56 59 60 syl2anc φMF-1x0+∞HMF-1xH0+∞
62 20 21 61 sylc φxranF0˙HMF-1xH0+∞
63 dmmeas MranmeasuresdomMransigAlgebra
64 8 63 syl φdomMransigAlgebra
65 2 fvexi JV
66 65 a1i φJV
67 66 sgsiga φ𝛔JransigAlgebra
68 3 67 eqeltrid φSransigAlgebra
69 1 2 3 4 5 6 7 8 9 sibfmbl φFdomMMblFnμS
70 64 68 69 mbfmf φF:domMS
71 70 frnd φranFS
72 3 unieqi S=𝛔J
73 unisg JV𝛔J=J
74 65 73 mp1i φ𝛔J=J
75 72 74 eqtrid φS=J
76 1 2 tpsuni WTopSpB=J
77 12 76 syl φB=J
78 75 77 eqtr4d φS=B
79 71 78 sseqtrd φranFB
80 79 ssdifd φranF0˙B0˙
81 80 sselda φxranF0˙xB0˙
82 81 eldifad φxranF0˙xB
83 simp2 φHMF-1xH0+∞xBHMF-1xH0+∞
84 eleq1 m=HMF-1xmH0+∞HMF-1xH0+∞
85 84 3anbi2d m=HMF-1xφmH0+∞xBφHMF-1xH0+∞xB
86 oveq1 m=HMF-1xm·˙x=HMF-1x·˙x
87 86 eleq1d m=HMF-1xm·˙xBHMF-1x·˙xB
88 85 87 imbi12d m=HMF-1xφmH0+∞xBm·˙xBφHMF-1xH0+∞xBHMF-1x·˙xB
89 88 15 vtoclg HMF-1xH0+∞φHMF-1xH0+∞xBHMF-1x·˙xB
90 83 89 mpcom φHMF-1xH0+∞xBHMF-1x·˙xB
91 20 62 82 90 syl3anc φxranF0˙HMF-1x·˙xB
92 91 fmpttd φxranF0˙HMF-1x·˙x:ranF0˙B
93 mptexg ranF0˙VxranF0˙HMF-1x·˙xV
94 19 93 syl φxranF0˙HMF-1x·˙xV
95 4 fvexi 0˙V
96 suppimacnv xranF0˙HMF-1x·˙xV0˙VxranF0˙HMF-1x·˙xsupp0˙=xranF0˙HMF-1x·˙x-1V0˙
97 94 95 96 sylancl φxranF0˙HMF-1x·˙xsupp0˙=xranF0˙HMF-1x·˙x-1V0˙
98 1 2 3 4 5 6 7 8 9 sibfrn φranFFin
99 cnvimass xranF0˙HMF-1x·˙x-1V0˙domxranF0˙HMF-1x·˙x
100 eqid xranF0˙HMF-1x·˙x=xranF0˙HMF-1x·˙x
101 100 dmmptss domxranF0˙HMF-1x·˙xranF0˙
102 99 101 sstri xranF0˙HMF-1x·˙x-1V0˙ranF0˙
103 difss ranF0˙ranF
104 102 103 sstri xranF0˙HMF-1x·˙x-1V0˙ranF
105 ssfi ranFFinxranF0˙HMF-1x·˙x-1V0˙ranFxranF0˙HMF-1x·˙x-1V0˙Fin
106 98 104 105 sylancl φxranF0˙HMF-1x·˙x-1V0˙Fin
107 97 106 eqeltrd φxranF0˙HMF-1x·˙xsupp0˙Fin
108 1 4 13 19 92 107 gsumcl2 φWxranF0˙HMF-1x·˙xB
109 16 108 eqeltrd φWFdMB