Metamath Proof Explorer


Theorem sitgclg

Description: Closure of the Bochner integral on simple functions, generic version. See sitgclbn for the version for Banach spaces. (Contributed by Thierry Arnoux, 24-Feb-2018) (Proof shortened by AV, 12-Dec-2019)

Ref Expression
Hypotheses sitgval.b B = Base W
sitgval.j J = TopOpen W
sitgval.s S = 𝛔 J
sitgval.0 0 ˙ = 0 W
sitgval.x · ˙ = W
sitgval.h H = ℝHom Scalar W
sitgval.1 φ W V
sitgval.2 φ M ran measures
sibfmbl.1 φ F M W
sitgclg.g G = Scalar W
sitgclg.d D = dist G Base G × Base G
sitgclg.1 φ W TopSp
sitgclg.2 φ W CMnd
sitgclg.3 φ Scalar W ℝExt
sitgclg.4 φ m H 0 +∞ x B m · ˙ x B
Assertion sitgclg φ W F dM B

Proof

Step Hyp Ref Expression
1 sitgval.b B = Base W
2 sitgval.j J = TopOpen W
3 sitgval.s S = 𝛔 J
4 sitgval.0 0 ˙ = 0 W
5 sitgval.x · ˙ = W
6 sitgval.h H = ℝHom Scalar W
7 sitgval.1 φ W V
8 sitgval.2 φ M ran measures
9 sibfmbl.1 φ F M W
10 sitgclg.g G = Scalar W
11 sitgclg.d D = dist G Base G × Base G
12 sitgclg.1 φ W TopSp
13 sitgclg.2 φ W CMnd
14 sitgclg.3 φ Scalar W ℝExt
15 sitgclg.4 φ m H 0 +∞ x B m · ˙ x B
16 1 2 3 4 5 6 7 8 9 sitgfval φ W F dM = W x ran F 0 ˙ H M F -1 x · ˙ x
17 rnexg F M W ran F V
18 difexg ran F V ran F 0 ˙ V
19 9 17 18 3syl φ ran F 0 ˙ V
20 simpl φ x ran F 0 ˙ φ
21 1 2 3 4 5 6 7 8 9 sibfima φ x ran F 0 ˙ M F -1 x 0 +∞
22 10 fveq2i dist G = dist Scalar W
23 10 fveq2i Base G = Base Scalar W
24 23 23 xpeq12i Base G × Base G = Base Scalar W × Base Scalar W
25 22 24 reseq12i dist G Base G × Base G = dist Scalar W Base Scalar W × Base Scalar W
26 11 25 eqtri D = dist Scalar W Base Scalar W × Base Scalar W
27 eqid topGen ran . = topGen ran .
28 eqid Base Scalar W = Base Scalar W
29 10 fveq2i TopOpen G = TopOpen Scalar W
30 10 fveq2i ℤMod G = ℤMod Scalar W
31 10 14 eqeltrid φ G ℝExt
32 rrextdrg G ℝExt G DivRing
33 31 32 syl φ G DivRing
34 10 33 eqeltrrid φ Scalar W DivRing
35 rrextnrg G ℝExt G NrmRing
36 31 35 syl φ G NrmRing
37 10 36 eqeltrrid φ Scalar W NrmRing
38 eqid ℤMod G = ℤMod G
39 38 rrextnlm G ℝExt ℤMod G NrmMod
40 31 39 syl φ ℤMod G NrmMod
41 10 fveq2i chr G = chr Scalar W
42 rrextchr G ℝExt chr G = 0
43 31 42 syl φ chr G = 0
44 41 43 eqtr3id φ chr Scalar W = 0
45 rrextcusp G ℝExt G CUnifSp
46 31 45 syl φ G CUnifSp
47 10 46 eqeltrrid φ Scalar W CUnifSp
48 10 fveq2i UnifSt G = UnifSt Scalar W
49 eqid Base G = Base G
50 49 11 rrextust G ℝExt UnifSt G = metUnif D
51 31 50 syl φ UnifSt G = metUnif D
52 48 51 eqtr3id φ UnifSt Scalar W = metUnif D
53 26 27 28 29 30 34 37 40 44 47 52 rrhf φ ℝHom Scalar W : Base Scalar W
54 6 feq1i H : Base Scalar W ℝHom Scalar W : Base Scalar W
55 53 54 sylibr φ H : Base Scalar W
56 55 ffund φ Fun H
57 rge0ssre 0 +∞
58 55 fdmd φ dom H =
59 57 58 sseqtrrid φ 0 +∞ dom H
60 funfvima2 Fun H 0 +∞ dom H M F -1 x 0 +∞ H M F -1 x H 0 +∞
61 56 59 60 syl2anc φ M F -1 x 0 +∞ H M F -1 x H 0 +∞
62 20 21 61 sylc φ x ran F 0 ˙ H M F -1 x H 0 +∞
63 dmmeas M ran measures dom M ran sigAlgebra
64 8 63 syl φ dom M ran sigAlgebra
65 2 fvexi J V
66 65 a1i φ J V
67 66 sgsiga φ 𝛔 J ran sigAlgebra
68 3 67 eqeltrid φ S ran sigAlgebra
69 1 2 3 4 5 6 7 8 9 sibfmbl φ F dom M MblFn μ S
70 64 68 69 mbfmf φ F : dom M S
71 70 frnd φ ran F S
72 3 unieqi S = 𝛔 J
73 unisg J V 𝛔 J = J
74 65 73 mp1i φ 𝛔 J = J
75 72 74 eqtrid φ S = J
76 1 2 tpsuni W TopSp B = J
77 12 76 syl φ B = J
78 75 77 eqtr4d φ S = B
79 71 78 sseqtrd φ ran F B
80 79 ssdifd φ ran F 0 ˙ B 0 ˙
81 80 sselda φ x ran F 0 ˙ x B 0 ˙
82 81 eldifad φ x ran F 0 ˙ x B
83 simp2 φ H M F -1 x H 0 +∞ x B H M F -1 x H 0 +∞
84 eleq1 m = H M F -1 x m H 0 +∞ H M F -1 x H 0 +∞
85 84 3anbi2d m = H M F -1 x φ m H 0 +∞ x B φ H M F -1 x H 0 +∞ x B
86 oveq1 m = H M F -1 x m · ˙ x = H M F -1 x · ˙ x
87 86 eleq1d m = H M F -1 x m · ˙ x B H M F -1 x · ˙ x B
88 85 87 imbi12d m = H M F -1 x φ m H 0 +∞ x B m · ˙ x B φ H M F -1 x H 0 +∞ x B H M F -1 x · ˙ x B
89 88 15 vtoclg H M F -1 x H 0 +∞ φ H M F -1 x H 0 +∞ x B H M F -1 x · ˙ x B
90 83 89 mpcom φ H M F -1 x H 0 +∞ x B H M F -1 x · ˙ x B
91 20 62 82 90 syl3anc φ x ran F 0 ˙ H M F -1 x · ˙ x B
92 91 fmpttd φ x ran F 0 ˙ H M F -1 x · ˙ x : ran F 0 ˙ B
93 mptexg ran F 0 ˙ V x ran F 0 ˙ H M F -1 x · ˙ x V
94 19 93 syl φ x ran F 0 ˙ H M F -1 x · ˙ x V
95 4 fvexi 0 ˙ V
96 suppimacnv x ran F 0 ˙ H M F -1 x · ˙ x V 0 ˙ V x ran F 0 ˙ H M F -1 x · ˙ x supp 0 ˙ = x ran F 0 ˙ H M F -1 x · ˙ x -1 V 0 ˙
97 94 95 96 sylancl φ x ran F 0 ˙ H M F -1 x · ˙ x supp 0 ˙ = x ran F 0 ˙ H M F -1 x · ˙ x -1 V 0 ˙
98 1 2 3 4 5 6 7 8 9 sibfrn φ ran F Fin
99 cnvimass x ran F 0 ˙ H M F -1 x · ˙ x -1 V 0 ˙ dom x ran F 0 ˙ H M F -1 x · ˙ x
100 eqid x ran F 0 ˙ H M F -1 x · ˙ x = x ran F 0 ˙ H M F -1 x · ˙ x
101 100 dmmptss dom x ran F 0 ˙ H M F -1 x · ˙ x ran F 0 ˙
102 99 101 sstri x ran F 0 ˙ H M F -1 x · ˙ x -1 V 0 ˙ ran F 0 ˙
103 difss ran F 0 ˙ ran F
104 102 103 sstri x ran F 0 ˙ H M F -1 x · ˙ x -1 V 0 ˙ ran F
105 ssfi ran F Fin x ran F 0 ˙ H M F -1 x · ˙ x -1 V 0 ˙ ran F x ran F 0 ˙ H M F -1 x · ˙ x -1 V 0 ˙ Fin
106 98 104 105 sylancl φ x ran F 0 ˙ H M F -1 x · ˙ x -1 V 0 ˙ Fin
107 97 106 eqeltrd φ x ran F 0 ˙ H M F -1 x · ˙ x supp 0 ˙ Fin
108 1 4 13 19 92 107 gsumcl2 φ W x ran F 0 ˙ H M F -1 x · ˙ x B
109 16 108 eqeltrd φ W F dM B