| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow2a.x |
|
| 2 |
|
sylow2a.m |
|
| 3 |
|
sylow2a.p |
|
| 4 |
|
sylow2a.f |
|
| 5 |
|
sylow2a.y |
|
| 6 |
|
sylow2a.z |
|
| 7 |
|
sylow2a.r |
|
| 8 |
1 2 3 4 5 6 7
|
sylow2alem2 |
|
| 9 |
|
inass |
|
| 10 |
|
disjdif |
|
| 11 |
10
|
ineq2i |
|
| 12 |
|
in0 |
|
| 13 |
9 11 12
|
3eqtri |
|
| 14 |
13
|
a1i |
|
| 15 |
|
inundif |
|
| 16 |
15
|
eqcomi |
|
| 17 |
16
|
a1i |
|
| 18 |
|
pwfi |
|
| 19 |
5 18
|
sylib |
|
| 20 |
7 1
|
gaorber |
|
| 21 |
2 20
|
syl |
|
| 22 |
21
|
qsss |
|
| 23 |
19 22
|
ssfid |
|
| 24 |
5
|
adantr |
|
| 25 |
22
|
sselda |
|
| 26 |
25
|
elpwid |
|
| 27 |
24 26
|
ssfid |
|
| 28 |
|
hashcl |
|
| 29 |
27 28
|
syl |
|
| 30 |
29
|
nn0cnd |
|
| 31 |
14 17 23 30
|
fsumsplit |
|
| 32 |
21 5
|
qshash |
|
| 33 |
|
inss1 |
|
| 34 |
|
ssfi |
|
| 35 |
23 33 34
|
sylancl |
|
| 36 |
|
ax-1cn |
|
| 37 |
|
fsumconst |
|
| 38 |
35 36 37
|
sylancl |
|
| 39 |
|
elin |
|
| 40 |
|
eqid |
|
| 41 |
|
sseq1 |
|
| 42 |
|
velpw |
|
| 43 |
41 42
|
bitr4di |
|
| 44 |
|
breq1 |
|
| 45 |
43 44
|
imbi12d |
|
| 46 |
21
|
adantr |
|
| 47 |
|
simpr |
|
| 48 |
46 47
|
erref |
|
| 49 |
|
vex |
|
| 50 |
49 49
|
elec |
|
| 51 |
48 50
|
sylibr |
|
| 52 |
|
ssel |
|
| 53 |
51 52
|
syl5com |
|
| 54 |
1 2 3 4 5 6 7
|
sylow2alem1 |
|
| 55 |
49
|
ensn1 |
|
| 56 |
54 55
|
eqbrtrdi |
|
| 57 |
56
|
ex |
|
| 58 |
57
|
adantr |
|
| 59 |
53 58
|
syld |
|
| 60 |
40 45 59
|
ectocld |
|
| 61 |
60
|
impr |
|
| 62 |
39 61
|
sylan2b |
|
| 63 |
|
en1b |
|
| 64 |
62 63
|
sylib |
|
| 65 |
64
|
fveq2d |
|
| 66 |
|
vuniex |
|
| 67 |
|
hashsng |
|
| 68 |
66 67
|
ax-mp |
|
| 69 |
65 68
|
eqtrdi |
|
| 70 |
69
|
sumeq2dv |
|
| 71 |
6
|
ssrab3 |
|
| 72 |
|
ssfi |
|
| 73 |
5 71 72
|
sylancl |
|
| 74 |
|
hashcl |
|
| 75 |
73 74
|
syl |
|
| 76 |
75
|
nn0cnd |
|
| 77 |
76
|
mulridd |
|
| 78 |
6 5
|
rabexd |
|
| 79 |
|
eqid |
|
| 80 |
7
|
relopabiv |
|
| 81 |
|
relssdmrn |
|
| 82 |
80 81
|
ax-mp |
|
| 83 |
|
erdm |
|
| 84 |
21 83
|
syl |
|
| 85 |
84 5
|
eqeltrd |
|
| 86 |
|
errn |
|
| 87 |
21 86
|
syl |
|
| 88 |
87 5
|
eqeltrd |
|
| 89 |
85 88
|
xpexd |
|
| 90 |
|
ssexg |
|
| 91 |
82 89 90
|
sylancr |
|
| 92 |
|
simpr |
|
| 93 |
71 92
|
sselid |
|
| 94 |
|
ecelqsg |
|
| 95 |
91 93 94
|
syl2an2r |
|
| 96 |
54 95
|
eqeltrrd |
|
| 97 |
|
snelpwi |
|
| 98 |
97
|
adantl |
|
| 99 |
96 98
|
elind |
|
| 100 |
|
simpr |
|
| 101 |
100
|
elin2d |
|
| 102 |
101
|
elpwid |
|
| 103 |
64 102
|
eqsstrrd |
|
| 104 |
66
|
snss |
|
| 105 |
103 104
|
sylibr |
|
| 106 |
|
sneq |
|
| 107 |
106
|
eqeq2d |
|
| 108 |
64 107
|
syl5ibrcom |
|
| 109 |
108
|
adantrl |
|
| 110 |
|
unieq |
|
| 111 |
|
unisnv |
|
| 112 |
110 111
|
eqtr2di |
|
| 113 |
109 112
|
impbid1 |
|
| 114 |
79 99 105 113
|
f1o2d |
|
| 115 |
78 114
|
hasheqf1od |
|
| 116 |
115
|
oveq1d |
|
| 117 |
77 116
|
eqtr3d |
|
| 118 |
38 70 117
|
3eqtr4rd |
|
| 119 |
118
|
oveq1d |
|
| 120 |
31 32 119
|
3eqtr4rd |
|
| 121 |
|
hashcl |
|
| 122 |
5 121
|
syl |
|
| 123 |
122
|
nn0cnd |
|
| 124 |
|
diffi |
|
| 125 |
23 124
|
syl |
|
| 126 |
|
eldifi |
|
| 127 |
126 30
|
sylan2 |
|
| 128 |
125 127
|
fsumcl |
|
| 129 |
123 76 128
|
subaddd |
|
| 130 |
120 129
|
mpbird |
|
| 131 |
8 130
|
breqtrrd |
|