Metamath Proof Explorer


Theorem sylow2a

Description: A named lemma of Sylow's second and third theorems. If G is a finite P -group that acts on the finite set Y , then the set Z of all points of Y fixed by every element of G has cardinality equivalent to the cardinality of Y , mod P . (Contributed by Mario Carneiro, 17-Jan-2015)

Ref Expression
Hypotheses sylow2a.x X=BaseG
sylow2a.m φ˙GGrpActY
sylow2a.p φPpGrpG
sylow2a.f φXFin
sylow2a.y φYFin
sylow2a.z Z=uY|hXh˙u=u
sylow2a.r ˙=xy|xyYgXg˙x=y
Assertion sylow2a φPYZ

Proof

Step Hyp Ref Expression
1 sylow2a.x X=BaseG
2 sylow2a.m φ˙GGrpActY
3 sylow2a.p φPpGrpG
4 sylow2a.f φXFin
5 sylow2a.y φYFin
6 sylow2a.z Z=uY|hXh˙u=u
7 sylow2a.r ˙=xy|xyYgXg˙x=y
8 1 2 3 4 5 6 7 sylow2alem2 φPzY/˙𝒫Zz
9 inass Y/˙𝒫ZY/˙𝒫Z=Y/˙𝒫ZY/˙𝒫Z
10 disjdif 𝒫ZY/˙𝒫Z=
11 10 ineq2i Y/˙𝒫ZY/˙𝒫Z=Y/˙
12 in0 Y/˙=
13 9 11 12 3eqtri Y/˙𝒫ZY/˙𝒫Z=
14 13 a1i φY/˙𝒫ZY/˙𝒫Z=
15 inundif Y/˙𝒫ZY/˙𝒫Z=Y/˙
16 15 eqcomi Y/˙=Y/˙𝒫ZY/˙𝒫Z
17 16 a1i φY/˙=Y/˙𝒫ZY/˙𝒫Z
18 pwfi YFin𝒫YFin
19 5 18 sylib φ𝒫YFin
20 7 1 gaorber ˙GGrpActY˙ErY
21 2 20 syl φ˙ErY
22 21 qsss φY/˙𝒫Y
23 19 22 ssfid φY/˙Fin
24 5 adantr φzY/˙YFin
25 22 sselda φzY/˙z𝒫Y
26 25 elpwid φzY/˙zY
27 24 26 ssfid φzY/˙zFin
28 hashcl zFinz0
29 27 28 syl φzY/˙z0
30 29 nn0cnd φzY/˙z
31 14 17 23 30 fsumsplit φzY/˙z=zY/˙𝒫Zz+zY/˙𝒫Zz
32 21 5 qshash φY=zY/˙z
33 inss1 Y/˙𝒫ZY/˙
34 ssfi Y/˙FinY/˙𝒫ZY/˙Y/˙𝒫ZFin
35 23 33 34 sylancl φY/˙𝒫ZFin
36 ax-1cn 1
37 fsumconst Y/˙𝒫ZFin1zY/˙𝒫Z1=Y/˙𝒫Z1
38 35 36 37 sylancl φzY/˙𝒫Z1=Y/˙𝒫Z1
39 elin zY/˙𝒫ZzY/˙z𝒫Z
40 eqid Y/˙=Y/˙
41 sseq1 w˙=zw˙ZzZ
42 velpw z𝒫ZzZ
43 41 42 bitr4di w˙=zw˙Zz𝒫Z
44 breq1 w˙=zw˙1𝑜z1𝑜
45 43 44 imbi12d w˙=zw˙Zw˙1𝑜z𝒫Zz1𝑜
46 21 adantr φwY˙ErY
47 simpr φwYwY
48 46 47 erref φwYw˙w
49 vex wV
50 49 49 elec ww˙w˙w
51 48 50 sylibr φwYww˙
52 ssel w˙Zww˙wZ
53 51 52 syl5com φwYw˙ZwZ
54 1 2 3 4 5 6 7 sylow2alem1 φwZw˙=w
55 49 ensn1 w1𝑜
56 54 55 eqbrtrdi φwZw˙1𝑜
57 56 ex φwZw˙1𝑜
58 57 adantr φwYwZw˙1𝑜
59 53 58 syld φwYw˙Zw˙1𝑜
60 40 45 59 ectocld φzY/˙z𝒫Zz1𝑜
61 60 impr φzY/˙z𝒫Zz1𝑜
62 39 61 sylan2b φzY/˙𝒫Zz1𝑜
63 en1b z1𝑜z=z
64 62 63 sylib φzY/˙𝒫Zz=z
65 64 fveq2d φzY/˙𝒫Zz=z
66 vuniex zV
67 hashsng zVz=1
68 66 67 ax-mp z=1
69 65 68 eqtrdi φzY/˙𝒫Zz=1
70 69 sumeq2dv φzY/˙𝒫Zz=zY/˙𝒫Z1
71 6 ssrab3 ZY
72 ssfi YFinZYZFin
73 5 71 72 sylancl φZFin
74 hashcl ZFinZ0
75 73 74 syl φZ0
76 75 nn0cnd φZ
77 76 mulridd φZ1=Z
78 6 5 rabexd φZV
79 eqid wZw=wZw
80 7 relopabiv Rel˙
81 relssdmrn Rel˙˙dom˙×ran˙
82 80 81 ax-mp ˙dom˙×ran˙
83 erdm ˙ErYdom˙=Y
84 21 83 syl φdom˙=Y
85 84 5 eqeltrd φdom˙Fin
86 errn ˙ErYran˙=Y
87 21 86 syl φran˙=Y
88 87 5 eqeltrd φran˙Fin
89 85 88 xpexd φdom˙×ran˙V
90 ssexg ˙dom˙×ran˙dom˙×ran˙V˙V
91 82 89 90 sylancr φ˙V
92 simpr φwZwZ
93 71 92 sselid φwZwY
94 ecelqsg ˙VwYw˙Y/˙
95 91 93 94 syl2an2r φwZw˙Y/˙
96 54 95 eqeltrrd φwZwY/˙
97 snelpwi wZw𝒫Z
98 97 adantl φwZw𝒫Z
99 96 98 elind φwZwY/˙𝒫Z
100 simpr φzY/˙𝒫ZzY/˙𝒫Z
101 100 elin2d φzY/˙𝒫Zz𝒫Z
102 101 elpwid φzY/˙𝒫ZzZ
103 64 102 eqsstrrd φzY/˙𝒫ZzZ
104 66 snss zZzZ
105 103 104 sylibr φzY/˙𝒫ZzZ
106 sneq w=zw=z
107 106 eqeq2d w=zz=wz=z
108 64 107 syl5ibrcom φzY/˙𝒫Zw=zz=w
109 108 adantrl φwZzY/˙𝒫Zw=zz=w
110 unieq z=wz=w
111 unisnv w=w
112 110 111 eqtr2di z=ww=z
113 109 112 impbid1 φwZzY/˙𝒫Zw=zz=w
114 79 99 105 113 f1o2d φwZw:Z1-1 ontoY/˙𝒫Z
115 78 114 hasheqf1od φZ=Y/˙𝒫Z
116 115 oveq1d φZ1=Y/˙𝒫Z1
117 77 116 eqtr3d φZ=Y/˙𝒫Z1
118 38 70 117 3eqtr4rd φZ=zY/˙𝒫Zz
119 118 oveq1d φZ+zY/˙𝒫Zz=zY/˙𝒫Zz+zY/˙𝒫Zz
120 31 32 119 3eqtr4rd φZ+zY/˙𝒫Zz=Y
121 hashcl YFinY0
122 5 121 syl φY0
123 122 nn0cnd φY
124 diffi Y/˙FinY/˙𝒫ZFin
125 23 124 syl φY/˙𝒫ZFin
126 eldifi zY/˙𝒫ZzY/˙
127 126 30 sylan2 φzY/˙𝒫Zz
128 125 127 fsumcl φzY/˙𝒫Zz
129 123 76 128 subaddd φYZ=zY/˙𝒫ZzZ+zY/˙𝒫Zz=Y
130 120 129 mpbird φYZ=zY/˙𝒫Zz
131 8 130 breqtrrd φPYZ