| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitscyglem5.1 |
|
| 2 |
|
unitscyglem5.2 |
|
| 3 |
|
unitscyglem5.3 |
|
| 4 |
|
unitscyglem5.4 |
|
| 5 |
|
unitscyglem5.5 |
|
| 6 |
4
|
phicld |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
2
|
idomringd |
|
| 10 |
|
eqid |
|
| 11 |
10 1
|
unitgrp |
|
| 12 |
9 11
|
syl |
|
| 13 |
|
eqid |
|
| 14 |
1 13
|
ressbasss |
|
| 15 |
14
|
a1i |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
16 17
|
mgpbas |
|
| 19 |
18
|
a1i |
|
| 20 |
19
|
eqimsscd |
|
| 21 |
15 20
|
sstrd |
|
| 22 |
3 21
|
ssfid |
|
| 23 |
18
|
eqcomi |
|
| 24 |
23 10
|
unitss |
|
| 25 |
24
|
a1i |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
adantr |
|
| 28 |
1 13
|
ressbasssg |
|
| 29 |
28
|
a1i |
|
| 30 |
|
inss1 |
|
| 31 |
30
|
a1i |
|
| 32 |
29 31
|
sstrd |
|
| 33 |
32
|
adantr |
|
| 34 |
33
|
sseld |
|
| 35 |
34
|
imp |
|
| 36 |
|
simpr |
|
| 37 |
36
|
adantr |
|
| 38 |
1 27 35 37
|
ressmulgnnd |
|
| 39 |
38
|
eqeq1d |
|
| 40 |
39
|
rabbidva |
|
| 41 |
40
|
fveq2d |
|
| 42 |
|
fvex |
|
| 43 |
42
|
rabex |
|
| 44 |
43
|
a1i |
|
| 45 |
|
hashxrcl |
|
| 46 |
44 45
|
syl |
|
| 47 |
41 46
|
eqeltrrd |
|
| 48 |
|
fvex |
|
| 49 |
48
|
rabex |
|
| 50 |
49
|
a1i |
|
| 51 |
|
hashxrcl |
|
| 52 |
50 51
|
syl |
|
| 53 |
|
nnre |
|
| 54 |
53
|
adantl |
|
| 55 |
54
|
rexrd |
|
| 56 |
|
simprl |
|
| 57 |
21
|
ad2antrr |
|
| 58 |
57
|
sseld |
|
| 59 |
56 58
|
mpd |
|
| 60 |
59
|
rabss3d |
|
| 61 |
50 60
|
jca |
|
| 62 |
|
hashss |
|
| 63 |
61 62
|
syl |
|
| 64 |
2
|
adantr |
|
| 65 |
|
eqid |
|
| 66 |
10 1 65
|
unitgrpid |
|
| 67 |
9 66
|
syl |
|
| 68 |
67
|
eqcomd |
|
| 69 |
17 65
|
ringidcl |
|
| 70 |
9 69
|
syl |
|
| 71 |
68 70
|
eqeltrd |
|
| 72 |
71
|
adantr |
|
| 73 |
|
eqid |
|
| 74 |
17 73
|
idomrootle |
|
| 75 |
64 72 36 74
|
syl3anc |
|
| 76 |
47 52 55 63 75
|
xrletrd |
|
| 77 |
41 76
|
eqbrtrd |
|
| 78 |
77
|
ralrimiva |
|
| 79 |
7 8 12 22 78 4 5
|
unitscyglem4 |
|
| 80 |
79
|
eleq1d |
|
| 81 |
6 80
|
mpbird |
|
| 82 |
81
|
nngt0d |
|
| 83 |
42
|
rabex |
|
| 84 |
83
|
a1i |
|
| 85 |
|
hashneq0 |
|
| 86 |
84 85
|
syl |
|
| 87 |
82 86
|
mpbid |
|
| 88 |
|
n0 |
|
| 89 |
87 88
|
sylib |
|
| 90 |
|
nfv |
|
| 91 |
|
fveqeq2 |
|
| 92 |
91
|
elrab |
|
| 93 |
92
|
biimpi |
|
| 94 |
93
|
adantl |
|
| 95 |
|
simpll |
|
| 96 |
|
simprl |
|
| 97 |
|
simprr |
|
| 98 |
95 96 97
|
jca31 |
|
| 99 |
2
|
idomcringd |
|
| 100 |
16
|
crngmgp |
|
| 101 |
99 100
|
syl |
|
| 102 |
101
|
ad2antrr |
|
| 103 |
4
|
ad2antrr |
|
| 104 |
15
|
sselda |
|
| 105 |
104
|
adantr |
|
| 106 |
9
|
ad2antrr |
|
| 107 |
10 16
|
unitsubm |
|
| 108 |
106 107
|
syl |
|
| 109 |
105 23
|
eleqtrdi |
|
| 110 |
102
|
cmnmndd |
|
| 111 |
4
|
nnzd |
|
| 112 |
|
1zzd |
|
| 113 |
111 112
|
zsubcld |
|
| 114 |
|
1cnd |
|
| 115 |
114
|
addridd |
|
| 116 |
4
|
nnge1d |
|
| 117 |
115 116
|
eqbrtrd |
|
| 118 |
|
1red |
|
| 119 |
|
0red |
|
| 120 |
4
|
nnred |
|
| 121 |
118 119 120
|
leaddsub2d |
|
| 122 |
117 121
|
mpbid |
|
| 123 |
113 122
|
jca |
|
| 124 |
|
elnn0z |
|
| 125 |
123 124
|
sylibr |
|
| 126 |
125
|
adantr |
|
| 127 |
126
|
adantr |
|
| 128 |
18 73 110 127 109
|
mulgnn0cld |
|
| 129 |
|
simpr |
|
| 130 |
129
|
oveq1d |
|
| 131 |
130
|
eqeq1d |
|
| 132 |
|
eqid |
|
| 133 |
16 132
|
mgpplusg |
|
| 134 |
133
|
a1i |
|
| 135 |
134
|
oveqd |
|
| 136 |
103
|
nncnd |
|
| 137 |
|
1cnd |
|
| 138 |
136 137
|
npcand |
|
| 139 |
138
|
eqcomd |
|
| 140 |
139
|
oveq1d |
|
| 141 |
|
eqid |
|
| 142 |
13 73 141
|
mulgnn0p1 |
|
| 143 |
110 127 105 142
|
syl3anc |
|
| 144 |
140 143
|
eqtr2d |
|
| 145 |
16 65
|
ringidval |
|
| 146 |
145
|
a1i |
|
| 147 |
146
|
eqcomd |
|
| 148 |
10 65
|
1unit |
|
| 149 |
9 148
|
syl |
|
| 150 |
147 149
|
eqeltrd |
|
| 151 |
150
|
adantr |
|
| 152 |
151
|
adantr |
|
| 153 |
24
|
a1i |
|
| 154 |
|
eqid |
|
| 155 |
1 13 154
|
ress0g |
|
| 156 |
110 152 153 155
|
syl3anc |
|
| 157 |
|
simpr |
|
| 158 |
157
|
eqcomd |
|
| 159 |
158
|
oveq1d |
|
| 160 |
|
eqid |
|
| 161 |
|
eqid |
|
| 162 |
7 160 8 161
|
odid |
|
| 163 |
162
|
ad2antlr |
|
| 164 |
159 163
|
eqtrd |
|
| 165 |
164
|
eqcomd |
|
| 166 |
156 165
|
eqtrd |
|
| 167 |
32
|
sselda |
|
| 168 |
167
|
adantr |
|
| 169 |
1 153 168 103
|
ressmulgnnd |
|
| 170 |
166 169
|
eqtr2d |
|
| 171 |
144 170
|
eqtrd |
|
| 172 |
145
|
a1i |
|
| 173 |
172
|
eqcomd |
|
| 174 |
171 173
|
eqtrd |
|
| 175 |
135 174
|
eqtrd |
|
| 176 |
128 131 175
|
rspcedvd |
|
| 177 |
109 176
|
jca |
|
| 178 |
|
eqid |
|
| 179 |
17 178 132
|
dvdsr |
|
| 180 |
177 179
|
sylibr |
|
| 181 |
99
|
adantr |
|
| 182 |
181
|
adantr |
|
| 183 |
10 65 178
|
crngunit |
|
| 184 |
182 183
|
syl |
|
| 185 |
180 184
|
mpbird |
|
| 186 |
|
eqid |
|
| 187 |
1 186 160
|
submod |
|
| 188 |
108 185 187
|
syl2anc |
|
| 189 |
188 157
|
eqtrd |
|
| 190 |
102 103 105 189
|
isprimroot2 |
|
| 191 |
98 190
|
syl |
|
| 192 |
94 191
|
mpdan |
|
| 193 |
192
|
ex |
|
| 194 |
90 193
|
eximd |
|
| 195 |
89 194
|
mpd |
|
| 196 |
|
n0 |
|
| 197 |
195 196
|
sylibr |
|