Metamath Proof Explorer


Theorem vitali

Description: If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion vitali < ˙ We dom vol 𝒫

Proof

Step Hyp Ref Expression
1 reex V
2 1 pwex 𝒫 V
3 weinxp < ˙ We < ˙ 2 We
4 unipw 𝒫 =
5 weeq2 𝒫 = < ˙ 2 We 𝒫 < ˙ 2 We
6 4 5 ax-mp < ˙ 2 We 𝒫 < ˙ 2 We
7 3 6 bitr4i < ˙ We < ˙ 2 We 𝒫
8 1 1 xpex 2 V
9 8 inex2 < ˙ 2 V
10 weeq1 x = < ˙ 2 x We 𝒫 < ˙ 2 We 𝒫
11 9 10 spcev < ˙ 2 We 𝒫 x x We 𝒫
12 7 11 sylbi < ˙ We x x We 𝒫
13 dfac8c 𝒫 V x x We 𝒫 f z 𝒫 z f z z
14 2 12 13 mpsyl < ˙ We f z 𝒫 z f z z
15 qex V
16 15 inex1 1 1 V
17 nnrecq x 1 x
18 nnrecre x 1 x
19 neg1rr 1
20 19 a1i x 1
21 0re 0
22 21 a1i x 0
23 neg1lt0 1 < 0
24 19 21 23 ltleii 1 0
25 24 a1i x 1 0
26 nnrp x x +
27 26 rpreccld x 1 x +
28 27 rpge0d x 0 1 x
29 20 22 18 25 28 letrd x 1 1 x
30 nnge1 x 1 x
31 nnre x x
32 nngt0 x 0 < x
33 1re 1
34 0lt1 0 < 1
35 lerec 1 0 < 1 x 0 < x 1 x 1 x 1 1
36 33 34 35 mpanl12 x 0 < x 1 x 1 x 1 1
37 31 32 36 syl2anc x 1 x 1 x 1 1
38 30 37 mpbid x 1 x 1 1
39 1div1e1 1 1 = 1
40 38 39 breqtrdi x 1 x 1
41 19 33 elicc2i 1 x 1 1 1 x 1 1 x 1 x 1
42 18 29 40 41 syl3anbrc x 1 x 1 1
43 17 42 elind x 1 x 1 1
44 oveq2 1 x = 1 y 1 1 x = 1 1 y
45 nncn x x
46 nnne0 x x 0
47 45 46 recrecd x 1 1 x = x
48 nncn y y
49 nnne0 y y 0
50 48 49 recrecd y 1 1 y = y
51 47 50 eqeqan12d x y 1 1 x = 1 1 y x = y
52 44 51 syl5ib x y 1 x = 1 y x = y
53 oveq2 x = y 1 x = 1 y
54 52 53 impbid1 x y 1 x = 1 y x = y
55 43 54 dom2 1 1 V 1 1
56 16 55 ax-mp 1 1
57 inss1 1 1
58 ssdomg V 1 1 1 1
59 15 57 58 mp2 1 1
60 qnnen
61 domentr 1 1 1 1
62 59 60 61 mp2an 1 1
63 sbth 1 1 1 1 1 1
64 56 62 63 mp2an 1 1
65 bren 1 1 g g : 1-1 onto 1 1
66 64 65 mpbi g g : 1-1 onto 1 1
67 eleq1w a = x a 0 1 x 0 1
68 eleq1w b = y b 0 1 y 0 1
69 67 68 bi2anan9 a = x b = y a 0 1 b 0 1 x 0 1 y 0 1
70 oveq12 a = x b = y a b = x y
71 70 eleq1d a = x b = y a b x y
72 69 71 anbi12d a = x b = y a 0 1 b 0 1 a b x 0 1 y 0 1 x y
73 72 cbvopabv a b | a 0 1 b 0 1 a b = x y | x 0 1 y 0 1 x y
74 eqid 0 1 / a b | a 0 1 b 0 1 a b = 0 1 / a b | a 0 1 b 0 1 a b
75 fvex f c V
76 eqid c 0 1 / a b | a 0 1 b 0 1 a b f c = c 0 1 / a b | a 0 1 b 0 1 a b f c
77 75 76 fnmpti c 0 1 / a b | a 0 1 b 0 1 a b f c Fn 0 1 / a b | a 0 1 b 0 1 a b
78 77 a1i < ˙ We z 𝒫 z f z z g : 1-1 onto 1 1 ¬ ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 dom vol c 0 1 / a b | a 0 1 b 0 1 a b f c Fn 0 1 / a b | a 0 1 b 0 1 a b
79 neeq1 z = w z w
80 fveq2 z = w f z = f w
81 id z = w z = w
82 80 81 eleq12d z = w f z z f w w
83 79 82 imbi12d z = w z f z z w f w w
84 83 cbvralvw z 𝒫 z f z z w 𝒫 w f w w
85 73 vitalilem1 a b | a 0 1 b 0 1 a b Er 0 1
86 85 a1i a b | a 0 1 b 0 1 a b Er 0 1
87 86 qsss 0 1 / a b | a 0 1 b 0 1 a b 𝒫 0 1
88 87 mptru 0 1 / a b | a 0 1 b 0 1 a b 𝒫 0 1
89 unitssre 0 1
90 89 sspwi 𝒫 0 1 𝒫
91 88 90 sstri 0 1 / a b | a 0 1 b 0 1 a b 𝒫
92 ssralv 0 1 / a b | a 0 1 b 0 1 a b 𝒫 w 𝒫 w f w w w 0 1 / a b | a 0 1 b 0 1 a b w f w w
93 91 92 ax-mp w 𝒫 w f w w w 0 1 / a b | a 0 1 b 0 1 a b w f w w
94 84 93 sylbi z 𝒫 z f z z w 0 1 / a b | a 0 1 b 0 1 a b w f w w
95 fveq2 c = w f c = f w
96 fvex f w V
97 95 76 96 fvmpt w 0 1 / a b | a 0 1 b 0 1 a b c 0 1 / a b | a 0 1 b 0 1 a b f c w = f w
98 97 eleq1d w 0 1 / a b | a 0 1 b 0 1 a b c 0 1 / a b | a 0 1 b 0 1 a b f c w w f w w
99 98 imbi2d w 0 1 / a b | a 0 1 b 0 1 a b w c 0 1 / a b | a 0 1 b 0 1 a b f c w w w f w w
100 99 ralbiia w 0 1 / a b | a 0 1 b 0 1 a b w c 0 1 / a b | a 0 1 b 0 1 a b f c w w w 0 1 / a b | a 0 1 b 0 1 a b w f w w
101 94 100 sylibr z 𝒫 z f z z w 0 1 / a b | a 0 1 b 0 1 a b w c 0 1 / a b | a 0 1 b 0 1 a b f c w w
102 101 ad2antlr < ˙ We z 𝒫 z f z z g : 1-1 onto 1 1 ¬ ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 dom vol w 0 1 / a b | a 0 1 b 0 1 a b w c 0 1 / a b | a 0 1 b 0 1 a b f c w w
103 simprl < ˙ We z 𝒫 z f z z g : 1-1 onto 1 1 ¬ ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 dom vol g : 1-1 onto 1 1
104 oveq1 t = s t g m = s g m
105 104 eleq1d t = s t g m ran c 0 1 / a b | a 0 1 b 0 1 a b f c s g m ran c 0 1 / a b | a 0 1 b 0 1 a b f c
106 105 cbvrabv t | t g m ran c 0 1 / a b | a 0 1 b 0 1 a b f c = s | s g m ran c 0 1 / a b | a 0 1 b 0 1 a b f c
107 fveq2 m = n g m = g n
108 107 oveq2d m = n s g m = s g n
109 108 eleq1d m = n s g m ran c 0 1 / a b | a 0 1 b 0 1 a b f c s g n ran c 0 1 / a b | a 0 1 b 0 1 a b f c
110 109 rabbidv m = n s | s g m ran c 0 1 / a b | a 0 1 b 0 1 a b f c = s | s g n ran c 0 1 / a b | a 0 1 b 0 1 a b f c
111 106 110 eqtrid m = n t | t g m ran c 0 1 / a b | a 0 1 b 0 1 a b f c = s | s g n ran c 0 1 / a b | a 0 1 b 0 1 a b f c
112 111 cbvmptv m t | t g m ran c 0 1 / a b | a 0 1 b 0 1 a b f c = n s | s g n ran c 0 1 / a b | a 0 1 b 0 1 a b f c
113 simprr < ˙ We z 𝒫 z f z z g : 1-1 onto 1 1 ¬ ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 dom vol ¬ ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 dom vol
114 73 74 78 102 103 112 113 vitalilem5 ¬ < ˙ We z 𝒫 z f z z g : 1-1 onto 1 1 ¬ ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 dom vol
115 114 pm2.21i < ˙ We z 𝒫 z f z z g : 1-1 onto 1 1 ¬ ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 dom vol ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 dom vol
116 115 expr < ˙ We z 𝒫 z f z z g : 1-1 onto 1 1 ¬ ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 dom vol ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 dom vol
117 116 pm2.18d < ˙ We z 𝒫 z f z z g : 1-1 onto 1 1 ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 dom vol
118 eldif ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 dom vol ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 ¬ ran c 0 1 / a b | a 0 1 b 0 1 a b f c dom vol
119 mblss x dom vol x
120 velpw x 𝒫 x
121 119 120 sylibr x dom vol x 𝒫
122 121 ssriv dom vol 𝒫
123 ssnelpss dom vol 𝒫 ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 ¬ ran c 0 1 / a b | a 0 1 b 0 1 a b f c dom vol dom vol 𝒫
124 122 123 ax-mp ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 ¬ ran c 0 1 / a b | a 0 1 b 0 1 a b f c dom vol dom vol 𝒫
125 118 124 sylbi ran c 0 1 / a b | a 0 1 b 0 1 a b f c 𝒫 dom vol dom vol 𝒫
126 117 125 syl < ˙ We z 𝒫 z f z z g : 1-1 onto 1 1 dom vol 𝒫
127 126 ex < ˙ We z 𝒫 z f z z g : 1-1 onto 1 1 dom vol 𝒫
128 127 exlimdv < ˙ We z 𝒫 z f z z g g : 1-1 onto 1 1 dom vol 𝒫
129 66 128 mpi < ˙ We z 𝒫 z f z z dom vol 𝒫
130 14 129 exlimddv < ˙ We dom vol 𝒫