Metamath Proof Explorer


Theorem vitali

Description: If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion vitali <˙Wedomvol𝒫

Proof

Step Hyp Ref Expression
1 reex V
2 1 pwex 𝒫V
3 weinxp <˙We<˙2We
4 unipw 𝒫=
5 weeq2 𝒫=<˙2We𝒫<˙2We
6 4 5 ax-mp <˙2We𝒫<˙2We
7 3 6 bitr4i <˙We<˙2We𝒫
8 1 1 xpex 2V
9 8 inex2 <˙2V
10 weeq1 x=<˙2xWe𝒫<˙2We𝒫
11 9 10 spcev <˙2We𝒫xxWe𝒫
12 7 11 sylbi <˙WexxWe𝒫
13 dfac8c 𝒫VxxWe𝒫fz𝒫zfzz
14 2 12 13 mpsyl <˙Wefz𝒫zfzz
15 qex V
16 15 inex1 11V
17 nnrecq x1x
18 nnrecre x1x
19 neg1rr 1
20 19 a1i x1
21 0re 0
22 21 a1i x0
23 neg1lt0 1<0
24 19 21 23 ltleii 10
25 24 a1i x10
26 nnrp xx+
27 26 rpreccld x1x+
28 27 rpge0d x01x
29 20 22 18 25 28 letrd x11x
30 nnge1 x1x
31 nnre xx
32 nngt0 x0<x
33 1re 1
34 0lt1 0<1
35 lerec 10<1x0<x1x1x11
36 33 34 35 mpanl12 x0<x1x1x11
37 31 32 36 syl2anc x1x1x11
38 30 37 mpbid x1x11
39 1div1e1 11=1
40 38 39 breqtrdi x1x1
41 19 33 elicc2i 1x111x11x1x1
42 18 29 40 41 syl3anbrc x1x11
43 17 42 elind x1x11
44 oveq2 1x=1y11x=11y
45 nncn xx
46 nnne0 xx0
47 45 46 recrecd x11x=x
48 nncn yy
49 nnne0 yy0
50 48 49 recrecd y11y=y
51 47 50 eqeqan12d xy11x=11yx=y
52 44 51 imbitrid xy1x=1yx=y
53 oveq2 x=y1x=1y
54 52 53 impbid1 xy1x=1yx=y
55 43 54 dom2 11V11
56 16 55 ax-mp 11
57 inss1 11
58 ssdomg V1111
59 15 57 58 mp2 11
60 qnnen
61 domentr 1111
62 59 60 61 mp2an 11
63 sbth 111111
64 56 62 63 mp2an 11
65 bren 11gg:1-1 onto11
66 64 65 mpbi gg:1-1 onto11
67 eleq1w a=xa01x01
68 eleq1w b=yb01y01
69 67 68 bi2anan9 a=xb=ya01b01x01y01
70 oveq12 a=xb=yab=xy
71 70 eleq1d a=xb=yabxy
72 69 71 anbi12d a=xb=ya01b01abx01y01xy
73 72 cbvopabv ab|a01b01ab=xy|x01y01xy
74 eqid 01/ab|a01b01ab=01/ab|a01b01ab
75 fvex fcV
76 eqid c01/ab|a01b01abfc=c01/ab|a01b01abfc
77 75 76 fnmpti c01/ab|a01b01abfcFn01/ab|a01b01ab
78 77 a1i <˙Wez𝒫zfzzg:1-1 onto11¬ranc01/ab|a01b01abfc𝒫domvolc01/ab|a01b01abfcFn01/ab|a01b01ab
79 neeq1 z=wzw
80 fveq2 z=wfz=fw
81 id z=wz=w
82 80 81 eleq12d z=wfzzfww
83 79 82 imbi12d z=wzfzzwfww
84 83 cbvralvw z𝒫zfzzw𝒫wfww
85 73 vitalilem1 ab|a01b01abEr01
86 85 a1i ab|a01b01abEr01
87 86 qsss 01/ab|a01b01ab𝒫01
88 87 mptru 01/ab|a01b01ab𝒫01
89 unitssre 01
90 89 sspwi 𝒫01𝒫
91 88 90 sstri 01/ab|a01b01ab𝒫
92 ssralv 01/ab|a01b01ab𝒫w𝒫wfwww01/ab|a01b01abwfww
93 91 92 ax-mp w𝒫wfwww01/ab|a01b01abwfww
94 84 93 sylbi z𝒫zfzzw01/ab|a01b01abwfww
95 fveq2 c=wfc=fw
96 fvex fwV
97 95 76 96 fvmpt w01/ab|a01b01abc01/ab|a01b01abfcw=fw
98 97 eleq1d w01/ab|a01b01abc01/ab|a01b01abfcwwfww
99 98 imbi2d w01/ab|a01b01abwc01/ab|a01b01abfcwwwfww
100 99 ralbiia w01/ab|a01b01abwc01/ab|a01b01abfcwww01/ab|a01b01abwfww
101 94 100 sylibr z𝒫zfzzw01/ab|a01b01abwc01/ab|a01b01abfcww
102 101 ad2antlr <˙Wez𝒫zfzzg:1-1 onto11¬ranc01/ab|a01b01abfc𝒫domvolw01/ab|a01b01abwc01/ab|a01b01abfcww
103 simprl <˙Wez𝒫zfzzg:1-1 onto11¬ranc01/ab|a01b01abfc𝒫domvolg:1-1 onto11
104 oveq1 t=stgm=sgm
105 104 eleq1d t=stgmranc01/ab|a01b01abfcsgmranc01/ab|a01b01abfc
106 105 cbvrabv t|tgmranc01/ab|a01b01abfc=s|sgmranc01/ab|a01b01abfc
107 fveq2 m=ngm=gn
108 107 oveq2d m=nsgm=sgn
109 108 eleq1d m=nsgmranc01/ab|a01b01abfcsgnranc01/ab|a01b01abfc
110 109 rabbidv m=ns|sgmranc01/ab|a01b01abfc=s|sgnranc01/ab|a01b01abfc
111 106 110 eqtrid m=nt|tgmranc01/ab|a01b01abfc=s|sgnranc01/ab|a01b01abfc
112 111 cbvmptv mt|tgmranc01/ab|a01b01abfc=ns|sgnranc01/ab|a01b01abfc
113 simprr <˙Wez𝒫zfzzg:1-1 onto11¬ranc01/ab|a01b01abfc𝒫domvol¬ranc01/ab|a01b01abfc𝒫domvol
114 73 74 78 102 103 112 113 vitalilem5 ¬<˙Wez𝒫zfzzg:1-1 onto11¬ranc01/ab|a01b01abfc𝒫domvol
115 114 pm2.21i <˙Wez𝒫zfzzg:1-1 onto11¬ranc01/ab|a01b01abfc𝒫domvolranc01/ab|a01b01abfc𝒫domvol
116 115 expr <˙Wez𝒫zfzzg:1-1 onto11¬ranc01/ab|a01b01abfc𝒫domvolranc01/ab|a01b01abfc𝒫domvol
117 116 pm2.18d <˙Wez𝒫zfzzg:1-1 onto11ranc01/ab|a01b01abfc𝒫domvol
118 eldif ranc01/ab|a01b01abfc𝒫domvolranc01/ab|a01b01abfc𝒫¬ranc01/ab|a01b01abfcdomvol
119 mblss xdomvolx
120 velpw x𝒫x
121 119 120 sylibr xdomvolx𝒫
122 121 ssriv domvol𝒫
123 ssnelpss domvol𝒫ranc01/ab|a01b01abfc𝒫¬ranc01/ab|a01b01abfcdomvoldomvol𝒫
124 122 123 ax-mp ranc01/ab|a01b01abfc𝒫¬ranc01/ab|a01b01abfcdomvoldomvol𝒫
125 118 124 sylbi ranc01/ab|a01b01abfc𝒫domvoldomvol𝒫
126 117 125 syl <˙Wez𝒫zfzzg:1-1 onto11domvol𝒫
127 126 ex <˙Wez𝒫zfzzg:1-1 onto11domvol𝒫
128 127 exlimdv <˙Wez𝒫zfzzgg:1-1 onto11domvol𝒫
129 66 128 mpi <˙Wez𝒫zfzzdomvol𝒫
130 14 129 exlimddv <˙Wedomvol𝒫