Metamath Proof Explorer


Theorem vitalilem5

Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Hypotheses vitali.1 ˙=xy|x01y01xy
vitali.2 S=01/˙
vitali.3 φFFnS
vitali.4 φzSzFzz
vitali.5 φG:1-1 onto11
vitali.6 T=ns|sGnranF
vitali.7 φ¬ranF𝒫domvol
Assertion vitalilem5 ¬φ

Proof

Step Hyp Ref Expression
1 vitali.1 ˙=xy|x01y01xy
2 vitali.2 S=01/˙
3 vitali.3 φFFnS
4 vitali.4 φzSzFzz
5 vitali.5 φG:1-1 onto11
6 vitali.6 T=ns|sGnranF
7 vitali.7 φ¬ranF𝒫domvol
8 0lt1 0<1
9 0re 0
10 1re 1
11 0le1 01
12 ovolicc 0101vol*01=10
13 9 10 11 12 mp3an vol*01=10
14 1m0e1 10=1
15 13 14 eqtri vol*01=1
16 8 15 breqtrri 0<vol*01
17 15 10 eqeltri vol*01
18 9 17 ltnlei 0<vol*01¬vol*010
19 16 18 mpbi ¬vol*010
20 1 2 3 4 5 6 7 vitalilem2 φranF0101mTmmTm12
21 20 simp2d φ01mTm
22 1 vitalilem1 ˙Er01
23 erdm ˙Er01dom˙=01
24 22 23 ax-mp dom˙=01
25 simpr φzSzS
26 25 2 eleqtrdi φzSz01/˙
27 elqsn0 dom˙=01z01/˙z
28 24 26 27 sylancr φzSz
29 22 a1i φ˙Er01
30 29 qsss φ01/˙𝒫01
31 2 30 eqsstrid φS𝒫01
32 31 sselda φzSz𝒫01
33 32 elpwid φzSz01
34 33 sseld φzSFzzFz01
35 28 34 embantd φzSzFzzFz01
36 35 ralimdva φzSzFzzzSFz01
37 4 36 mpd φzSFz01
38 ffnfv F:S01FFnSzSFz01
39 3 37 38 sylanbrc φF:S01
40 39 frnd φranF01
41 unitssre 01
42 40 41 sstrdi φranF
43 reex V
44 43 elpw2 ranF𝒫ranF
45 42 44 sylibr φranF𝒫
46 45 anim1i φ¬ranFdomvolranF𝒫¬ranFdomvol
47 eldif ranF𝒫domvolranF𝒫¬ranFdomvol
48 46 47 sylibr φ¬ranFdomvolranF𝒫domvol
49 48 ex φ¬ranFdomvolranF𝒫domvol
50 7 49 mt3d φranFdomvol
51 f1of G:1-1 onto11G:11
52 5 51 syl φG:11
53 inss1 11
54 qssre
55 53 54 sstri 11
56 fss G:1111G:
57 52 55 56 sylancl φG:
58 57 ffvelcdmda φnGn
59 shftmbl ranFdomvolGns|sGnranFdomvol
60 50 58 59 syl2an2r φns|sGnranFdomvol
61 60 6 fmptd φT:domvol
62 61 ffvelcdmda φmTmdomvol
63 62 ralrimiva φmTmdomvol
64 iunmbl mTmdomvolmTmdomvol
65 63 64 syl φmTmdomvol
66 mblss mTmdomvolmTm
67 65 66 syl φmTm
68 ovolss 01mTmmTmvol*01vol*mTm
69 21 67 68 syl2anc φvol*01vol*mTm
70 eqid seq1+mvol*Tm=seq1+mvol*Tm
71 eqid mvol*Tm=mvol*Tm
72 mblss TmdomvolTm
73 62 72 syl φmTm
74 1 2 3 4 5 6 7 vitalilem4 φmvol*Tm=0
75 74 9 eqeltrdi φmvol*Tm
76 74 mpteq2dva φmvol*Tm=m0
77 fconstmpt ×0=m0
78 nnuz =1
79 78 xpeq1i ×0=1×0
80 77 79 eqtr3i m0=1×0
81 76 80 eqtrdi φmvol*Tm=1×0
82 81 seqeq3d φseq1+mvol*Tm=seq1+1×0
83 1z 1
84 serclim0 1seq1+1×00
85 83 84 ax-mp seq1+1×00
86 82 85 eqbrtrdi φseq1+mvol*Tm0
87 seqex seq1+mvol*TmV
88 c0ex 0V
89 87 88 breldm seq1+mvol*Tm0seq1+mvol*Tmdom
90 86 89 syl φseq1+mvol*Tmdom
91 70 71 73 75 90 ovoliun2 φvol*mTmmvol*Tm
92 74 sumeq2dv φmvol*Tm=m0
93 78 eqimssi 1
94 93 orci 1Fin
95 sumz 1Finm0=0
96 94 95 ax-mp m0=0
97 92 96 eqtrdi φmvol*Tm=0
98 91 97 breqtrd φvol*mTm0
99 ovolge0 mTm0vol*mTm
100 67 99 syl φ0vol*mTm
101 ovolcl mTmvol*mTm*
102 67 101 syl φvol*mTm*
103 0xr 0*
104 xrletri3 vol*mTm*0*vol*mTm=0vol*mTm00vol*mTm
105 102 103 104 sylancl φvol*mTm=0vol*mTm00vol*mTm
106 98 100 105 mpbir2and φvol*mTm=0
107 69 106 breqtrd φvol*010
108 19 107 mto ¬φ